
Neural Task Synthesis for Visual Programming
Victor-Alexandru Pădurean, Georgios Tzannetos, Adish Singla

Max Planck Institute for Software Systems, Germany

Motivation and Overview
• We explore the role of generative AI in visual programming domains such

as Hour of Code:Maze Challenge by Code.org and Karel.
• The available set of tasks on existing platforms is very limited, posing a

major hurdle for novice students in mastering the missing concepts.
• We develop a novel technique to synthesize tasks for a given specification.
• Our technique can enable AI systems to provide personalized feedback to

students as new simpler tasks and worked examples for scaffolding.

Student is working
on task Tref, strug-
gling with obtaining
a solution code Cref.

AI system extracts
the specifications ψin

for a simpler task.

AI system generates
a task Tout based
on ψin, and deliv-
ers it to student.

(a) An interaction between student and AI system

Allowed blocks: {move,
turnLeft, turnRight,
RepeatUntil, IfElse}

Maximum size: 7

def Run(){
RepeatUntil(goal){

If(pathAhead){
move

}
Else{
If(pathRight){
turnRight

}
Else{
turnLeft

}
}

}
}

(b) Tref and solution Cref

a blocks is a body of
basic action blocks from
the set {move, turnLeft,
turnRight}
b is a boolean condi-
tion from {pathAhead,
pathLeft, pathRight}
Number of blocks should
be ≤ 7

def Run(){
a blocks
RepeatUntil(goal){
a blocks
If(b){
a blocks

}
Else{
a blocks

}
a blocks

}
}

(c) Specifications ψin

Allowed blocks: {move,
turnLeft, turnRight,
RepeatUntil, IfElse}

Maximum size: 7

def Run(){
RepeatUntil(goal){

If(pathRight){
turnRight

}
Else{
turnLeft
move

}
move

}
}

(d) Tout and Cout

Figure 1: Illustration of an AI system providing a new simpler task to a student

Problem Setup
Visual Programming Task T := (TIO, Tcode)

• TIO denotes the visual puzzle
• Tcode denotes additional constraints on a solution code

Solution Code C of a Task T

• C successfully solves TIO

• C respects Tcode

Task Synthesis Specification ψ := (ψIO, ψsketch, ψ∆)

• ψIO is a partially initialized visual puzzle of the task to be synthesized
• ψsketch and ψ∆ capture the constraints that should be followed by solution

codes of the task to be synthesized

Synthesis Objective for Tout given ψin

• O1:Validity. Tout respects ψin and there exists one solution C for Tout

• O2:Concepts. Tout conceptually captures specification ψin, i.e., its solution
codes respect the concepts and complexity of ψin

sketch

• O3:Trace. The quality of execution trace of solution codes on Tout

• O4:Overall. All the above objectives (O1, O2, O3) are satisfied
• O5:Human. The quality of Tout from a human expert’s point of view

Our Technique NEURTASKSYN

Purely Neural Techniques

• The generative process is highly brittle and the output task
could be incorrect w.r.t. the input specification.

Purely Symbolic Techniques

• The generative process is time-inefficient and not suitable
for applications that require real-time synthesis.

Neurally-guided Symbolic Engine

• We develop NEURTASKSYN that can synthesize
high-quality tasks while being robust and efficient.

Symbolic
Engine

Neural
Model

Illustrative Example

def Run(){
RepeatUntil(goal){

If(pathLeft){
turnLeft
move

}
Else{
move

}
}

}

(a) Tout
IO , Cout by

GPT4TASKSYN

def Run(){
turnLeft
turnLeft
RepeatUntil(goal){

If(pathRight){
move

}
Else{
move

}
}

}

(b) Tout
IO , Cout by

BASETASKSYN

def Run(){
RepeatUntil(goal){

If(pathRight){
turnRight

}
Else{
turnLeft
move

}
move

}
}

(c) Tout
IO , Cout by

NEURTASKSYN

def Run(){
RepeatUntil(goal){

If(pathAhead){
move

}
Else{
turnLeft

}
}

}

(d) Tout
IO , Cout by

EXPERT

Figure 2: Outputs for Specification ψin from Figure 1

Experimental Results
ψin ψin

sketch structure (depth, constructs) ψin
IO ψin

∆ Source

ψ0 {Run {Repeat}} (2, 1) 16x16 empty HoCMaze, blocks ⩽ 10 HoC:Maze9

ψ1 {Run {RepeatUntil}} (2, 1) 16x16 empty HoCMaze, blocks ⩽ 10 HoC:Maze13

ψ2 {Run {Repeat; Repeat}} (2, 2) 16x16 empty HoCMaze, blocks ⩽ 10 HoC:Maze8

ψ3 {Run {RepeatUntil{IfElse}}} (3, 2) 16x16 empty HoCMaze, blocks ⩽ 10 HoC:Maze18

ψ4 {Run {RepeatUntil{If; If}}} (3, 3) 16x16 empty HoCMaze, blocks ⩽ 10 HoC:Maze20

ψ5 {Run} (1, 0) 16x16 empty Karel, blocks ⩽ 10 Karel:OurFirst

ψ6 {Run {While}} (2, 1) 16x16 empty Karel, blocks ⩽ 10 Karel:Diagonal

ψ7 {Run {While; While}} (2, 2) 16x16 empty Karel, blocks ⩽ 10 Karel:RowBack

ψ8 {Run {While{If}}} (3, 2) 16x16 empty Karel, blocks ⩽ 10 Karel:Stairway

ψ9 {Run {While{Repeat}}} (3, 2) 16x16 empty Karel, blocks ⩽ 10 Karel:CleanAll

Technique O1:Validity O2:Concepts O3:Trace O4:Overall O5:Human

NEURTASKSYNc:10,p:100 1.00 0.83 0.80 0.80 0.77

BASETASKSYNc:10,p:100 0.97 0.37 0.33 0.33 0.20

GPT4TASKSYN-converse 0.97 0.57 0.60 0.43 0.27

GPT4TASKSYN-fewshot 0.80 0.37 0.57 0.33 0.13

EXPERT 1.00 1.00 1.00 1.00 1.00

Conclusions and Future Work
• We propose NEURTASKSYN, a novel neuro-symbolic

technique for synthesizing visual programming tasks.

• Our results show that GPT-4 faces challenges in code
execution, symbolic operations, and visual planning.

• Visual programming domains can serve as benchmarks
for assessing the capabilities of generative models.

• It would be interesting to fine-tune LLMs to improve their
capabilities for visual programming domains.

NeurIPS’23 Workshop on Generative AI for Education (GAIED)


