
Neural Task Synthesis for Visual Programming

Victor-Alexandru Pădurean, Georgios Tzannetos, Adish Singla

Max Planck Institute for Software Systems, Germany

Motivation and Overview

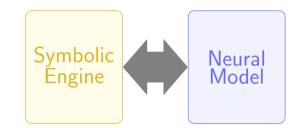
- We explore the role of generative AI in visual programming domains such as *Hour of Code:Maze Challenge* by Code.org and Karel.
- The available set of tasks on existing platforms is very limited, posing a major hurdle for novice students in mastering the missing concepts.
- We develop a novel technique to synthesize tasks for a given specification.
- Our technique can enable AI systems to provide personalized feedback to students as new simpler tasks and worked examples for scaffolding.

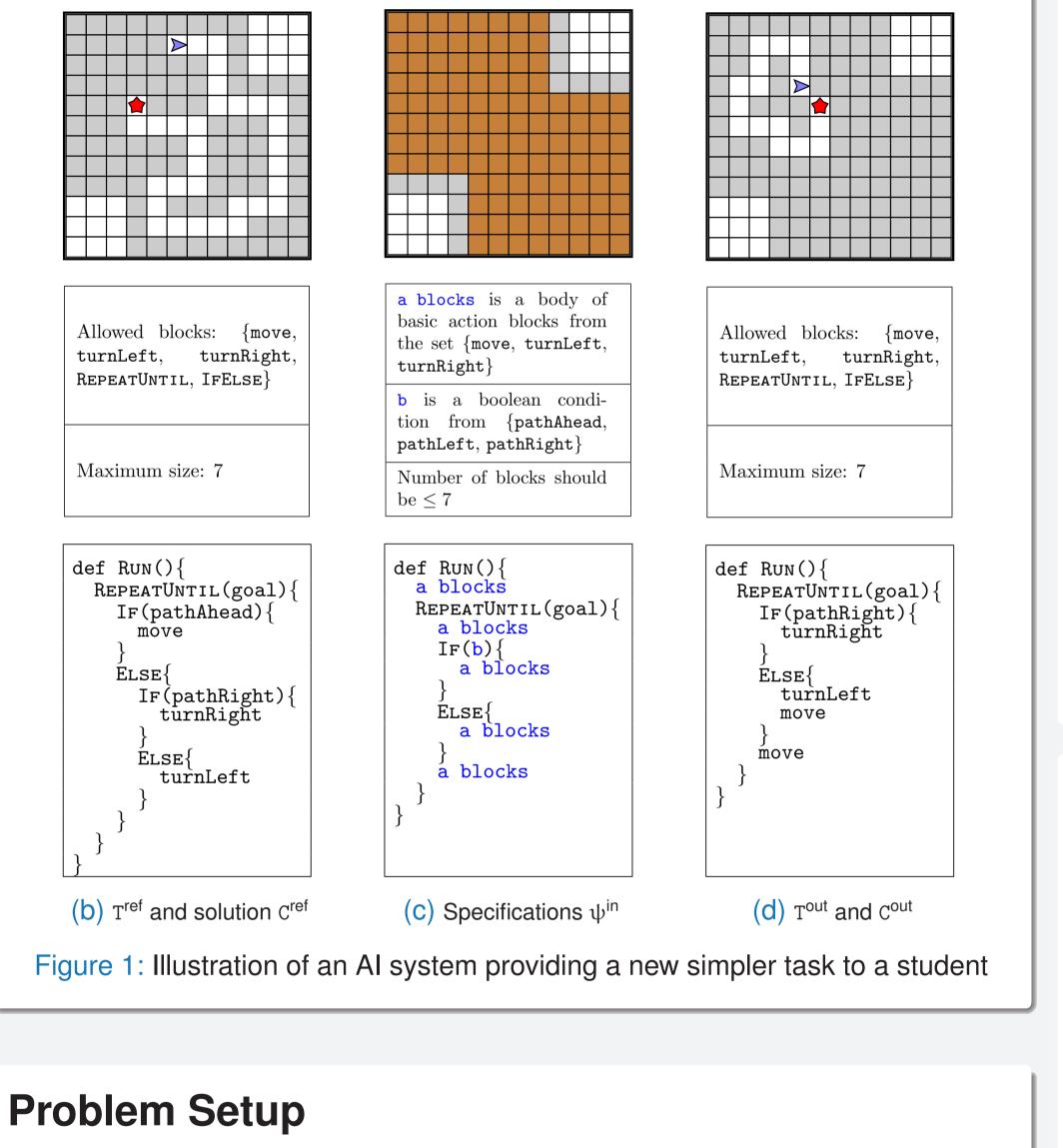
Our Technique NEURTASKSYN

Purely Neural Techniques

• The generative process is highly brittle and the output task could be incorrect w.r.t. the input specification.

Purely Symbolic Techniques


• The generative process is time-inefficient and not suitable for applications that require real-time synthesis.


Neurally-guided Symbolic Engine

• We develop NEURTASKSYN that can synthesize high-quality tasks while being robust and efficient.

Illustrative Example

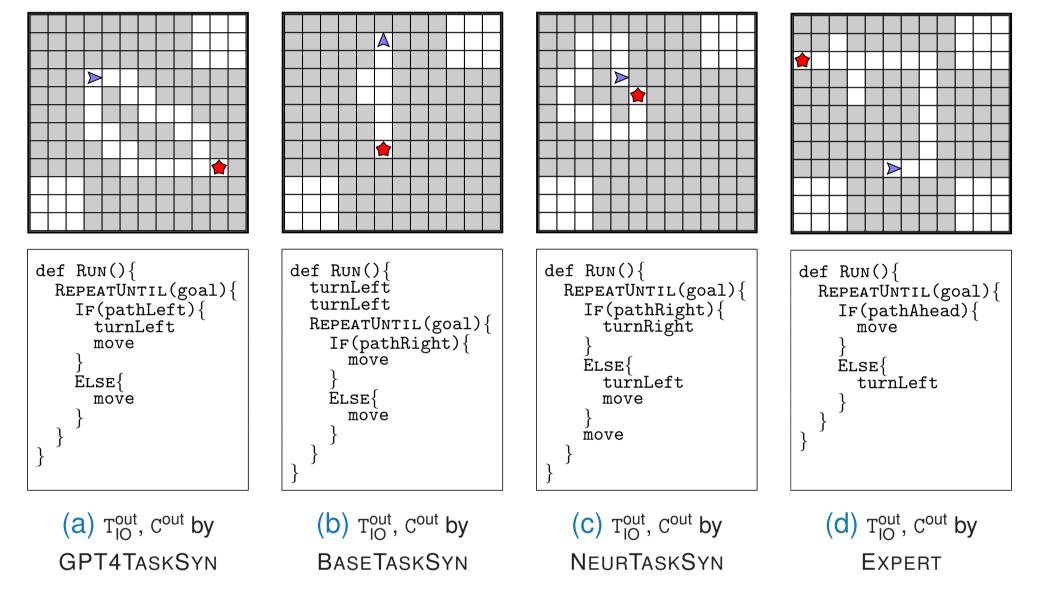


Figure 2: Outputs for Specification ψ^{in} from Figure 1

Experimental Results

ψ^{in}	ψ_{sketch}^{in} structure	(depth, co	onstructs)	16x16 emptyKare16x16 emptyKare16x16 emptyKare		$\psi^{\text{in}}_{\Delta}$	HoC:Maze13 HoC:Maze8 HoC:Maze18 HoC:Maze20 Karel:OurFirst
ψ0	$\{$ Run $\{$ Repeat $\}\}$	(2,	1) 16x			ze, blocks ≤ 10 Hze, blocks ≤ 10 Hze, blocks ≤ 10 Hze, blocks ≤ 10 Hrel, blocks ≤ 10 K	
ψ1	$\{$ Run $\{$ RepeatUntil $\}\}$	(2,	1) 16x				
ψ2	$\{$ Run $\{$ Repeat; Repeat $\}\}$	(2,	2) 16x				
ψ3	{RUN {REPEATUNTIL{IFELS	$se\}\}\}$ (3,	2) 16x				
ψ4	${Run {RepeatUntil{If; I}}$	~ }}} (3,	3) 16x				
ψ5	$\{Run\}$	(1,	0) 16x				
ψ6	$\{\texttt{Run} \{\texttt{While}\}\}$	(2,	1) 16x				
ψ7	{Run {While; While}}	(2,	2) 16x			el, blocks $\leqslant 10$	Karel:RowBacl
ψ8	$\{\texttt{Run} \{\texttt{While}\{\texttt{IF}\}\}\}$	(3,	2) 16x			el, blocks $\leqslant 10$	Karel:Stairway
ψ9	$\{Run \{While \{Repeat\}\}\}$	(3,	2) 16x			el, blocks $\leqslant 10$	Karel:CleanAll
Technique 01		O1:Validity	O2:Conce	ots O3	:Trace	O4:Overall	O5:Human
NEURTASKSYNc:10,p:100		1.00	0.83	(0.80	0.80	0.77
BASETASKSYNc:10,p:100		0.97	0.37		0.33	0.33	0.20
GPT4TASKSYN-converse		0.97	0.57		0.60	0.43	0.27
GPT4TASKSYN <i>-fewshot</i>		0.80	0.37		0.57	0.33	0.13
Expert		1.00	1.00		1.00	1.00	1.00

• T_{IO} denotes the visual puzzle

Visual Programming Task $T := (T_{IO}, T_{code})$

• T_{code} denotes additional constraints on a solution code

Solution Code C of a Task T

- C successfully solves T_{IO}
- C respects T_{code}

Task Synthesis Specification $\psi := (\psi_{IO}, \psi_{sketch}, \psi_{\Delta})$

- ψ_{IO} is a partially initialized visual puzzle of the task to be synthesized
- ψ_{sketch} and ψ_{Δ} capture the constraints that should be followed by solution codes of the task to be synthesized

Synthesis Objective for T^{out} given ψ^{in}

- **O1:Validity.** T^{out} respects ψ^{in} and there exists one solution C for T^{out}
- **O2:Concepts.** T^{out} conceptually captures specification ψ^{in} , i.e., its solution codes respect the concepts and complexity of $\psi_{\text{sketch}}^{\text{in}}$
- **O3:Trace.** The quality of execution trace of solution codes on T^{out}
- O4:Overall. All the above objectives (O1, O2, O3) are satisfied
- **O5:Human.** The quality of T^{out} from a human expert's point of view

Conclusions and Future Work

- We propose NEURTASKSYN, a novel neuro-symbolic technique for synthesizing visual programming tasks.
- Our results show that GPT-4 faces challenges in code execution, symbolic operations, and visual planning.
- Visual programming domains can serve as benchmarks for assessing the capabilities of generative models.
- It would be interesting to fine-tune LLMs to improve their capabilities for visual programming domains.

