Neural Task Synthesis for Visual Programming

Victor-Alexandru Pădurean
MPI-INF, Germany
vpadurea@mpi-inf.mpg.de

Georgios Tzannetos
MPI-SWS, Germany
gtzannet@mpi-sws.org

Adish Singla
MPI-SWS, Germany
adishs@mpi-sws.org

Abstract

Generative neural models hold great promise in enhancing programming education by synthesizing new content. We seek to design neural models that can automatically generate programming tasks for a given specification in the context of visual programming domains. Despite the recent successes of large generative models like GPT-4, our initial results show that these models are ineffective in synthesizing visual programming tasks and struggle with logical and spatial reasoning. We propose a novel neuro-symbolic technique, NEURTASKSYN, that can synthesize programming tasks for a specification given in the form of desired programming concepts exercised by its solution code and constraints on the visual task. NEURTASKSYN has two components: the first component is trained via imitation learning procedure to generate possible solution codes, and the second component is trained via reinforcement learning procedure to guide an underlying symbolic execution engine that generates visual tasks for these codes. We demonstrate the effectiveness of NEURTASKSYN through an extensive empirical evaluation and a qualitative study on reference tasks taken from the Hour of Code: Classic Maze challenge by Code.org and the Intro to Programming with Karel course by CodeHS.com.

1 Introduction

Recent advances in generative AI have demonstrated impressive performance in a variety of domains, including visual art and music creation [1][2][3][4][5], medicinal chemistry synthesis [6][7][8][9], and AI-enhanced programming [10][11]. These successes are, in part, driven by advanced capabilities of deep generative models, such as Stable Diffusion [5], chatGPT [12], and GPT-4 [13]. These advancements also hold great promise in enhancing education, for instance, by generating personalized content and new practice tasks for students allowing them to master required concepts [14][15][16][17].

In this paper, we explore the role of generative AI in visual programming domains used for introductory programming education. Popular domains, such as Scratch [18], Hour of Code:Maze Challenge by Code.org (HoCMaze) [19][20], and Karel [21], have become an integral part of introductory computer science education and are used by millions of students, including children and K-12 students [20][22][23]. In existing visual programming platforms, programming tasks are hand-curated by tutors and the available set of tasks is typically very limited, posing a major hurdle for novices in mastering the missing concepts [24][25]. To this end, we seek to design generative models that can automatically synthesize visual programming tasks for a given specification (e.g., see Figure 1a).

As a natural approach, one might be tempted to employ state-of-the-art models like GPT-4 to generate a visual programming task by providing task synthesis specification as a prompt. In particular, models like GPT-4 are trained on multi-modal data including text, code, and visual data, and hence it seems suitable technique for visual programming domains [13][28]. However, our initial results show that these models are ineffective in synthesizing visual programming tasks and struggle with logical and spatial reasoning, as has been indicated in recent literature on state-of-the-art models [29][28][30][31]. For instance, GPT-4’s Tout in Figure 1b are not solvable by codes that would match the input specification; see detailed discussion and results in Section 4. In general, a major challenge in using
Figure 1: Illustrative example showcasing task synthesis inspired by the STAIRWAY Karel task [21, 26, 27]. (a) Task synthesis specification ψ^in is provided as input: $\psi^\text{in}_\text{puzzle}$ is a single pregrid-postgrid pair with size 12x12 without any initialization of puzzle elements; $\psi^\text{in}_\text{sketch}$ along with ψ^in_Δ and $\psi^\text{in}_\text{size} = 10$ specify constraints on code solutions of a synthesized task. (b–d) show tasks T^out by three techniques and (e) shows task T^out based on STAIRWAY. (f–i) show codes C^out used as intermediate step to generate output tasks. See Section 2 and Section 4.

purely neural generative models for synthesizing visual programming tasks is that the generative process is highly brittle – even a small modification in the output task could make it invalid or semantically incorrect w.r.t. the input specification [25].

As an alternate to neural generative models, we could rely on symbolic generative methods driven by search and planning to generate content that matches a specification. Several works have shown the efficacy of symbolic methods to generate new tasks in various educational domains, e.g., algebra exercises [32, 33], geometric proof problems [34], natural deduction [35], mathematical word problems [36], Sokoban puzzles [37], and visual programming tasks [25, 38]. In particular, our work is related to [25, 38] that proposed symbolic methods guided by hand-crafted constraints and Monte Carlo Tree Search to generate high-quality visual programming tasks. However, their symbolic methods still suffer from intractably large spaces of feasible tasks/codes for a given specification, and could take several minutes to generate an output task for an input specification as shown in Figure 1a.
In general, a major shortcoming of using purely symbolic generative methods in the above-mentioned works is that the generative process is typically time-inefficient and not suitable for applications that require online or large-scale synthesis.

Against that backdrop, the main research question is: \textit{Can we develop neuro-symbolic techniques that can synthesize high-quality visual programming tasks while being robust and efficient?} To this end, we develop \textsc{NeurTaskSyn}, a novel neuro-symbolic technique that can synthesize programming tasks for input specifications in the form of desired programming concepts exercised by its solution code and constraints on the visual task. Given a task synthesis specification as input (Figure 1a), \textsc{NeurTaskSyn} uses two components trained via reinforcement learning procedure: the first component generates possible solution codes (Figure 1b), and the second component guides an underlying symbolic execution engine that generates visual tasks for these codes (Figure 1c). Our main results and contributions are summarized below: I. We formalize synthesizing visual programming tasks for a given specification. (Section 2) II. We propose \textsc{NeurTaskSyn}, a novel neuro-symbolic technique for synthesizing visual programming tasks. (Section 3) III. We demonstrate the effectiveness of \textsc{NeurTaskSyn} through an extensive evaluation on task specifications from real-world programming platforms (Section 4) IV. We will publicly release the implementation and datasets to facilitate future research.

2 Problem Setup

Visual programming tasks. We define a task as a tuple $T := (T_{\text{puzzle}}, T_{\text{store}}, T_{\text{size}})$, where T_{puzzle} denotes the visual puzzle, T_{store} the available blocks/commands, and T_{size} the maximum number of blocks/commands allowed in a solution code. This task space is inspired by popular visual programming domains, including block-based programming domain of \textit{Hour of Code:Maze Challenge} by Code.org (HoCMaze) [19, 20] and text-based programming domain of Karel [21]. For instance, the puzzle T_{puzzle} in Figure 1e is based on the \textit{STAIRWAY} task from \textit{Intro to Programming with Karel} course by CodeHS.com [26, 27]; a solution code when executed should transform this single pregrid to its postgrid with $T_{\text{store}} = \{\text{move}, \text{turnLeft}, \text{turnRight}, \text{putMarker}, \text{pickMarker}, \text{WHILE}, \text{IF}\}$ and $T_{\text{size}} = 8$.

Code space and solution codes of a task. We define the space of all possible codes in a domain via a domain-specific language (DSL). For instance, in our evaluation with HoCMaze and Karel programming domains, we will use their corresponding DSLs as introduced in [19, 21]. In our code representation, we will indicate specific tokens, including programming constructs and commands in the domain, jointly as “blocks”. A code C has the following attributes: C_{blocks} is the set of unique block types in C, C_{nblock} is the total number of blocks, C_{struct} is the nesting structure of blocks corresponding to programming constructs like loops/conditions, C_{depth} is the depth of the corresponding Abstract Syntax Tree (AST), and C_{nconst} is the total number of programming constructs. For instance, considering the code C in Figure 1c, $C_{\text{blocks}} = \{\text{move}, \text{turnLeft}, \text{turnRight}, \text{pickMarker}, \text{WHILE}, \text{IF}\}$, $C_{\text{nblock}} = 8$, $C_{\text{struct}} = \{\text{RUN} \{\text{WHILE}\{\text{IF}\}\}\}$, $C_{\text{depth}} = 3$, and $C_{\text{nconst}} = 2$. For a given task T, a code C is a solution code if the following holds: C successfully solves T_{puzzle}, $C_{\text{blocks}} \subseteq C_{\text{store}}$, and $C_{\text{nblock}} \leq T_{\text{size}}$.

Task synthesis specification. We now introduce a notation to specify desired tasks for synthesis that exercise certain programming concepts in their solution codes and respect certain constraints on the visual puzzle. We define a task synthesis specification as a tuple $\psi := (\psi_{\text{puzzle}}, \psi_{\text{sketch}}, \psi_{\Delta}, \psi_{\text{size}})$, where ψ_{puzzle} is partially initialized visual puzzle, ψ_{sketch} is a code sketch (i.e., a partial code) capturing the structure that should be followed by the synthesized task’s solution codes along with additional constraints specified by ψ_{Δ} and ψ_{size}. For instance, the task synthesis specification ψ in Figure 1a is inspired by the \textit{STAIRWAY} Karel task – here, ψ_{puzzle} is a single pregrid-postgrid pair with size 12x12 without any initialization of puzzle elements; ψ_{sketch} along with ψ_{Δ} and $\psi_{\text{size}} = 10$ specify constraints.

Synthesis objective. Given a task synthesis specification $\psi^{\text{in}} := (\psi_{\text{puzzle}}^{\text{in}}, \psi_{\text{sketch}}^{\text{in}}, \psi_{\Delta}^{\text{in}}, \psi_{\text{size}}^{\text{in}})$ as input, we seek to generate a task $T^{\text{out}} := (T_{\text{puzzle}}^{\text{out}}, T_{\text{store}}^{\text{out}}, T_{\text{size}}^{\text{out}})$ as output. To formally set our synthesis objective and evaluation metrics, below we introduce different criteria that we want T^{out} to satisfy w.r.t. ψ^{in}:

- **O1: Validity.** T^{out} is valid w.r.t. ψ^{in} if $T_{\text{puzzle}}^{\text{out}}$ respects $\psi_{\text{puzzle}}^{\text{in}}$, $T_{\text{store}}^{\text{out}}$ only contain blocks as allowed by $(\psi_{\text{sketch}}^{\text{in}}, \psi_{\Delta}^{\text{in}})$, and $T_{\text{size}}^{\text{out}} \leq \psi_{\text{size}}^{\text{in}}$.

- **O2: Solvability.** T^{out} is solvable, i.e., there exists at least one solution code.
• **O3: Concepts.** T_{out} conceptually captures ψ_{in} in the following sense: (a) there exists at least one solution code C for T_{out} that respects $(\psi_{\text{in}}^{\text{sketch}}, \psi_{\Delta}^{\text{sketch}})$; (b) any solution code C for T_{out} has C_{depth} and C_{const} at least as that required by $\psi_{\text{in}}^{\text{sketch}}$.

In addition, it is desirable that synthesized tasks meet the following properties of real-world tasks:

• **O4: Trace.** For any solution code C for T_{out} that respects $(\psi_{\text{in}}^{\text{sketch}}, \psi_{\Delta}^{\text{sketch}})$, the execution trace of C on T_{out} executes each loop or conditional at least n times. This property is inspired by real-world tasks which are easy to comprehend; we will use $n = 2$ in Section 4 evaluation.

• **O5: Minimality.** For any solution code C for T_{out} that respects $(\psi_{\text{in}}^{\text{sketch}}, \psi_{\Delta}^{\text{sketch}})$, it holds that $\text{C}_{\text{block}} \geq \text{size}_{\text{out}} - n$. This property is inspired by real-world tasks which ensure that size_{out} is set tightly; we will use $n = 1$ in Section 4 evaluation.

In order to capture these quality criteria into one objective, we include an overall quality metric, denoted as **Overall**. More concretely, for a given specification, **Overall** is 1 if all the synthesis objectives O1–O5 are 1. This metric is an indicator of the overall quality of a generated task in terms of matching conceptual specification (O1, O2, O3) and human-centered aspects of visual quality and suitability (O4, O5).

3 Our Synthesis Technique NEURTASKSYN

In this section, we present NEURTASKSYN, our neuro-symbolic technique to synthesize visual programming tasks (T_{out}) for an input specification (ψ_{in}). We provide an overview of our technique here, and full details are in the supplementary material.

As noted in Section 1, a key challenge in synthesizing tasks is that the mapping from the space of visual tasks to their solution codes is highly discontinuous — a small modification in the output task could make it invalid or semantically incorrect w.r.t. the input specification. This motivates two components in our synthesis process shown in Figure 2: the first component generates possible solution codes via random search and then describe a neural model to guide this base engine.

3.1 Generating the Solution Code C_{out}

The code generator component takes elements of the specification, $(\psi_{\text{in}}^{\text{sketch}}, \psi_{\Delta}^{\text{sketch}}, \psi_{\text{in}}^{\text{size}})$, that enforce constraints on solution codes of the desired task and accordingly generates a possible solution code C_{out}. We first describe a base symbolic engine to generate syntactically valid codes from specifications via random search and then describe a neural model to guide this base engine.

Base symbolic engine. The base engine operates on the AST representation of code sketches (i.e., partial codes) as introduced in Section 2. The engine generates codes by sampling tokens (i.e., blocks, conditions, and iterators) from the underlying DSL while respecting specification. Even though this engine ensures that a generated code is syntactically correct and valid w.r.t. specification, it could have semantic irregularities.

Neural model. The neural model is trained to guide the sampling process of the base symbolic engine. This neural model is akin to a program synthesizer and one could use a variety of architectures, for instance, transformer-based [33, 37, 25, 40] or custom-made encoder-decoder approaches [42, 39, 48]. Our neural architecture is based on the work of [49, 39] that use an LSTM-based decoder [50] for generating program solution for an input visual programming task; in our setting the input corresponds to the specification. Similar to [39], we use imitation (supervised) learning approach to train the neural model. Full implementation and training details are provided in the supplementary material.

3.2 Generating the Visual Puzzle $\text{T}_{\text{out}}^{\text{puzzle}}$ and Task T_{out}

The puzzle generator component takes elements of the specification, $\psi_{\text{in}}^{\text{puzzle}}$, that enforce constraints on visual puzzle along with generated code C_{out} and accordingly generates a visual puzzle $\text{T}_{\text{out}}^{\text{puzzle}}$. We first describe a base symbolic engine that performs symbolic execution of C_{out} to generate semantically valid puzzles via random search and then describe a neural model to guide this base engine.
Techniques evaluated. We evaluate N_C when Tree Search (MCTS) strategy to guide the symbolic execution for generating better puzzles with visual puzzles and combines it with features capturing code execution statistics (e.g., coverage, 4 Experimental Evaluation with Real-World Task Specifications × ψ domains, shown in Figure 3. These task specifications are inspired by their source tasks (see "Source" Note that we have trained and evaluated the technique on a synthetic dataset, as described in the Full implementation and training details are provided in the supplementary material.

Base symbolic engine. The base engine performs symbolic execution of C^out on ψ^in_puzzle which has uninitialized elements/unknowns (see Figure 1a and Section 2). This symbolic execution emulates an execution trace of C^out and makes decisions about these unknowns resulting in a concrete instantiation of ψ^out_puzzle. The outcome of these decisions affect the quality of the generated T^out_puzzle, e.g., the number of times each branch for the code in Figure[13] gets executed would affect the visual quality of the puzzle in Figure[14]. In fact, a code could have potentially unbounded number of possible execution traces and randomly taking decisions would typically lead to a lower quality task [42][25].

Neural model. The neural model is trained to guide the decision-making process of the base symbolic engine. This neural model can be thought of a reinforcement learning (RL) agent [51] whose goal is to make decisions about the unknowns encountered when symbolically executing a code with the objective of generating high-quality puzzles. Existing works have investigated the use of Monte Carlo Tree Search (MCTS) [52] strategy to guide the symbolic execution for generating better puzzles with fewer resources [37][25]. However, these works used MCTS at inference time without any learnt policy and could take several minutes to generate an output task for an input specification. To speed up the generation process at inference, we train an RL agent whose reward is defined via a scoring function F_core that captures the quality of the generated visual puzzle for an input specification; this scoring function is similar in spirit to that used for MCTS in [37][25]. More concretely, we consider an episodic Markov Decision Process where an episode corresponds to a full symbolic execution, the states capture the status of incomplete puzzle and code execution trace, actions correspond to the decisions needed by symbolic engine to instantiate encountered unknowns, transitions are deterministic, and reward is provided at the end of an episode based on F_core(T^out, C^out). We will instantiate F_core for a given programming domain. Our neural architecture, inspired by work on program synthesis for visual programming tasks [39][53], uses a CNN-based encoder for incomplete visual puzzles and combines it with features capturing code execution statistics (e.g., coverage, currently executed code block). We use actor-critic policy gradient method for agent training [51]. Full implementation and training details are provided in the supplementary material.

Outputting the task T^out. Finally, we instantiate elements of T^out := (T^out_puzzle, T^out_store, T^out_size), T^out_puzzle is based on the generated puzzle, T^out_store is set to blocks allowed by (ψ^in_sketch, ψ^in_A), and T^out_size = C^out_nblocks. 4 Experimental Evaluation with Real-World Task Specifications In this section, we evaluate our task synthesis technique NEURTASKSYN on real-world specifications. Note that we have trained and evaluated the technique on a synthetic dataset, as described in the supplementary material. For brevity, we present only the evaluation on real-world specifications.

Real-world task specifications. We use a set of 10 task specifications from HoCMaze and Karel domains, shown in Figure 3. These task specifications are inspired by their source tasks (see “Source” column in the figure) in the following sense: we create a specification ψ^in for which the corresponding source task is a desired task would be created by experts. Figure 3 shows illustration of task synthesis for a variant of ψ 8 (source as STAIRWAY Karel task) where we used 12x12 grid size.

Techniques evaluated. We evaluate NEURTASKSYN_c:10,p:100 with c = 10 and p = 100, i.e., total of c × p = 1000 rollouts Next, we describe three additional techniques evaluated:

- BASETASKSYN_c:10,p:100 operates similar to NEURTASKSYN_c:10,p:100, but uses only base symbolic engine with random search without any neural guidance.
- EXPERT technique simply outputs a task T^out based on the source task associated with input specification ψ^in; moreover it appropriately adjusts T^out_puzzle to match ψ^in_puzzle layout, sets T^out_store to blocks as allowed by (ψ^in_sketch, ψ^in_A), and sets T^out_size as size of the minimal solution code.
- GPT4TASKSYN is technique based on OpenAI’s GPT-4, a state-of-the-art large language model [13]. We provide a brief overview of how we use GPT-4 for task synthesis and defer the full details, including prompts and examples, to the supplementary material. We tried several different strategies and prompts to make GPT-4 work for synthesising visual programming tasks — here we report on the strategy based on a two-stage task synthesis process as shown in Figure[2]. More concretely, we first ask GPT-4 to generate a code C^out for ψ^in and then ask it to generate a puzzle T^out_puzzle that could be solved by C^out. The first stage comprised 5 separate queries to generate a C^out:

1] It is possible that the code C^out generated during intermediate step turns out not to be a solution for T^out_puzzle, e.g., when C^out is semantically incorrect and cannot generate a corresponding puzzle. In this case, we set T^out_size = ψ^size.
We believe our proposed technique has the potential to drastically enhance introductory programming education by synthesizing personalized content for students. Next, we discuss a few limitations of our current work and outline a plan for future work. First, the two neural components of NeURTaskSYN use LSTM/CNN-based architecture and trained from scratch; it would be interesting to fine-tune models like GPT-4 or (an open-source variant) CodeT5 [46] for synthesizing visual programming tasks. Second, our methodology focused on visual programming: it would be interesting to develop generative models for synthesizing tasks in other programming domains, e.g., Python problems that match a given specification. Third, our evaluation study focused on six objectives but didn’t involve human evaluation; in the future, it would be important to conduct user studies with educators and students to evaluate the quality of synthesized tasks.

5 Concluding Discussions

We developed a novel neuro-symbolic technique, NeURTaskSYN, that can synthesize visual programming tasks for a given specification. We demonstrated the effectiveness of NeURTaskSYN through an extensive evaluation on reference tasks from popular visual programming environments. We believe our proposed technique has the potential to drastically enhance introductory programming education by synthesizing personalized content for students. Next, we discuss a few limitations of our current work and outline a plan for future work. First, the two neural components of NeURTaskSYN use LSTM/CNN-based architecture and trained from scratch; it would be interesting to fine-tune models like GPT-4 or (an open-source variant) CodeT5 [46] for synthesizing visual programming tasks. Second, our methodology focused on visual programming: it would be interesting to develop generative models for synthesizing tasks in other programming domains, e.g., Python problems that match a given specification. Third, our evaluation study focused on six objectives but didn’t involve human evaluation; in the future, it would be important to conduct user studies with educators and students to evaluate the quality of synthesized tasks.
Acknowledgments and Disclosure of Funding

Funded/Co-funded by the European Union (ERC, TOPS, 101039090). Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Research Council. Neither the European Union nor the granting authority can be held responsible for them.

References

A Table of Contents

In this section, we provide a brief description of the content provided in the appendices of the paper.

• Appendix B provides a discussion of the broader impact of our work and compute resources used.
• Appendix C presents the details about the generation of the illustrative example from Figure 1 and shows its relationship with metrics O1-O5 described in Sections 2. Additionally, we introduce an illustrative example for HoCMaze.
• Appendix D gives more insights into the architecture described in Section 3.
• Appendix E presents an evaluation of NEURTASKS YN on a synthetic dataset and offers details about the scoring functions, the synthetic dataset creation process, and the training process.
• Appendix G provides the source task/code pairs used for creating the real-world task specifications in Section 4. It also provides more insights into the interaction with GPT-4.

B Discussion

Broader impact. This paper develops new techniques which have the potential of being used for improving pedagogy in visual programming environments. On the existing platforms, content is hand-curated by tutors, offering limited resources for students to practice on. We aim to tackle this challenge by synthesizing novel practice tasks that match a desired level of difficulty with regard to exercised content for a student. We believe our proposed technique has the potential to drastically enhance introductory programming education by synthesizing personalized content for students.

Compute resources. All the experiments were conducted on a cluster of machines equipped with Intel Xeon Gold 6142 CPUs running at a frequency of 2.60GHz.
C Illustrative Examples: Details

In this section, we discuss the details regarding the generation and scoring for each of the techniques’ output in Figure 1 for Karel. We introduce an additional illustrative example and offer details for HoCMaze as well.

C.1 Example for Karel in Figure 1

We present T_{out} along with C_{out} for each of the techniques with ψ_{in} as input in Figure 6; this figure expands on Figure 1 with additional details. We give additional explanations regarding how each of the techniques’ output respects or not metrics O1-O5 (see Sections 2 and 4 in Figure 5).

Generation/adjustment for GPT4TaskSyn in Figure 1. For this example, we set ψ_{in} as an empty 12x12 grid and query GPT-4.

Generation/adjustment for BaseTaskSyn and NeurTaskSyn in Figure 1. The neural model for puzzle generation is trained on 16x16 grids, yet the symbolic engine can support the existence of pre-initialized grids. Thus, we mask the upper-left part of the grid (4 rows and 4 columns), obtaining the 12x12 workspace for the technique.

Generation/adjustment for Expert in Figure 1. The output of Expert for this example is based on the Karel:Stairway task.

<table>
<thead>
<tr>
<th>Technique</th>
<th>O1:Validity</th>
<th>O2:Solvability</th>
<th>O3:Concepts</th>
<th>O4:Trace</th>
<th>O5:Minimality</th>
<th>Overall</th>
<th>C_{out} solves T_{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT4TaskSyn</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BaseTaskSyn</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>NeurTaskSyn</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Expert</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 5: Scores showing whether the output T_{out} for ψ_{in} of each technique respects the six metrics O1-O5 and Overall, with the additional C_{out} solves T_{out} metric, for this Karel example.

We provide explanations for each 0 entry in Figure 5:

- GPT4TaskSyn–O2: T_{out} cannot be solved with any code respecting T_{size}, hence O2 is 0.
- GPT4TaskSyn–O3: T_{out} cannot be solved with any code respecting T_{size}, hence O3 is 0.
- GPT4TaskSyn–O4: T_{out} cannot be solved with any code respecting T_{size}, hence O4 is 0.
- GPT4TaskSyn–O5: T_{out} cannot be solved with any code respecting T_{size}, hence O5 is 0.
- GPT4TaskSyn–C_{out} solves T_{out}. The generated code C_{out} does not solve T_{out}, i.e., the pregrid is not transformed into the postgrid after code execution.
- BaseTaskSyn–O3: The employed IF block is not required. This implies that there is a solution code C which has C_{depth} and C_{nconst} less than required by ψ_{sketch}, hence O3 is 0.
Figure 6: Illustration containing the tuple T_{out} for each technique, along with C_{out}, for this Karel example. This figure contains all the elements needed in T_{out}, completing Figure 1.
C.2 Example for HoCMaze

We present T^{out}, along with C^{out} for each of the techniques with ψ^{in} as input in Figure 8. We give additional explanations regarding how each of the techniques’ output respects or not metrics O1-O5 (see Sections 2 and 4 in Figure 7).

Generation/adjustment for GPT4TaskSYN. When querying GPT-4 for this example, we set $\psi^{\text{in}}_{\text{puzzle}}$ as an empty 8x8 grid. We then expand the generated grid to a 12x12 grid and manually integrate the pattern seen in Figure 8a to match the specification.

Generation/adjustment for BaseTaskSYN and NeurTaskSYN. The neural model for puzzle generation is trained on 16x16 grids, yet the symbolic engine can support the existence of pre-initialized grids. Thus, we mask the upper-left part of the grid (4 rows and 4 columns), obtaining the 12x12 workspace for the technique. On top of that, on the remaining 12x12 grid, we pre-initialize the pattern seen in Figure 8a (i.e., lower-left and upper-right bounded squares).

Generation/adjustment for Expert. The output of Expert represents a manual adaptation of the HoC:Maze18 task to expand it to a 12x12 grid and to integrate the pattern seen in Figure 8a.

<table>
<thead>
<tr>
<th>Technique</th>
<th>O1:Validity</th>
<th>O2:Solvability</th>
<th>O3:Concepts</th>
<th>O4:Trace</th>
<th>O5:Minimality</th>
<th>Overall</th>
<th>C^{out} solves T^{out}</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPT4TaskSYN</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BaseTaskSYN</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>NeurTaskSYN</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Expert</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure 7: Scores showing whether the output T^{out} for ψ^{in} of each technique respects the six metrics O1-O5 and Overall, with the additional C^{out} solves T^{out} metric, for this HoCMaze example.

We provide explanations for each 0 entry in Figure 7:

- **GPT4TaskSYN**–O3: The only possible solution code C has depth 4 and uses 3 constructs (nested IfElse is needed), i.e., $(\psi^{\text{in}}_{\text{sketch}}, \psi^{\text{in}}_{\Delta})$ is not respected, hence O3 is 0.
- **GPT4TaskSYN**–O4: There is no solution C that respects $(\psi^{\text{in}}_{\text{sketch}}, \psi^{\text{in}}_{\Delta})$, hence O4 is 0 by definition.
- **GPT4TaskSYN**–O5: There is no solution C that respects $(\psi^{\text{in}}_{\text{sketch}}, \psi^{\text{in}}_{\Delta})$, hence O5 is 0 by definition.
- **GPT4TaskSYN**–C$^{\text{out}}$ solves T$^{\text{out}}$: C$^{\text{out}}$, when executed on T$^{\text{out}}_{\text{puzzle}}$, makes the avatar crash into a wall, hence C$^{\text{out}}$ is not a solution for T$^{\text{out}}$.
- **BaseTaskSYN**–O3: The IfElse block employed by C$^{\text{out}}$ is not required. This implies that there is a solution code C which has C_{depth} and C_{const} less than required by $\psi^{\text{in}}_{\text{sketch}}$, hence O3 is 0.
- **BaseTaskSYN**–O4: As the employed IfElse block is not required, it is possible to design a solution code that uses IfElse with a different conditional (e.g., If(pathLeft)Else), for which the body would never be executed, hence O4 is 0.
- **BaseTaskSYN**–O5: By making use of the IfElse block (i.e., a possible solution would contain If(pathLeft){turnLeft}Else{move}), we can remove the two initial turnLeft blocks, thus reducing C_{block} below (T$^{\text{out}}_{\text{size}} - 1$), hence O5 is 0.
Figure 8: Illustrative example showcasing task synthesis inspired by the MAZE18 HoCMaze task [19, 20]. (a) Task synthesis specification \(\psi^{in} \) is provided as input: \(\psi^{in}_{\text{puzzle}} \) is a 12x12 maze with certain cells initialized to free (white) or wall (gray) cells; \(\psi^{in}_{\text{sketch}} \) along with \(\psi^{in}_{\Delta} \) and \(\psi^{in}_{\text{size}} = 7 \) specify constraints on code solutions of a synthesized task. (b–d) show tasks \(T^{out} \) by three synthesis techniques and (e) shows task \(T^{out} \) based on MAZE18. (f–i) show codes \(C^{out} \) used as an intermediate step to generate output tasks. See Sections 2 and 4.
D Our Synthesis Technique NURTASKSYN: Details

Next, we give additional details regarding each module of our architecture. We present the interaction between the neural models and the underlying symbolic engines, the neural architecture, and the training procedures.

D.1 Generating the Solution Code Cout

Code generator visualization. We describe the interaction between the neural model and the underlying symbolic engine for the code generator. For better understanding, we use one concrete example, illustrated in Figure 9. We consider the AST at time t as presented in Figure 9a, where the previously taken decision was the addition of the \texttt{turnLeft} token. The symbolic engine continues its depth-first traversal of the AST and now needs to take the next decision for the subsequent ‘a blocks’. This is achieved by interrogating the neural component; interaction demonstrated in Figure 9b. We introduce the notion of a budget, which represents the number of available blocks that can be added to the AST so that ψ_{size} is respected; in our example, the remaining budget is 2. It is passed as input for the neural model at time t. The neural model, based on the budget and its internal state, which keeps track of the previously taken decisions, outputs a logit for each decision, i.e., a set of logits L_{dict}. The symbolic engine accepts L_{dict} and masks them according to the rules in the DSL, thus obtaining L_{masked}. In our example, the only values in L_{masked} that are not masked are those of basic action blocks (i.e., move, turnLeft, turnRight) and the token that represents the end of the Else body. After mapping the logits to a probability distribution, the symbolic engine proceeds to sample a decision from it. In our example, move is sampled. The decision is passed to the neural model to update its internal state. The symbolic engine then updates the AST with the taken decision (i.e., move), thus obtaining the updated version of the AST for the next step at time $t+1$, illustrated in Figure 9c. We generalize this process to every decision that needs to be taken while traversing the AST.

![Figure 9: Visualization of the interaction process between the neural model and the symbolic engine in the code generator component of NURTASKSYN. (a) shows the AST at time t, where the first ‘a blocks’ needs to be decided. (b) shows the interaction between the symbolic engine and the neural model at time t, where the symbolic engine first passes the budget (available blocks) to the neural model, the neural model computes the logits for all the tokens in the dictionary L_{dict} and passes them back to the symbolic engine, which finally masks them obtaining L_{masked}, applies softmax to obtain a probability and samples the next action, sending it to the neural model. (c) shows the AST at time $t+1$, where the sampled move was integrated.](image)

Imitation learning procedure. We will now give details about the learning procedure we used for the neural model. Given the fact that dataset $\mathcal{D} := \{\psi_{\text{in}}\}$ is accompanied by example codes, i.e., \mathcal{C}_{m} for each ψ_{in}, we employ an imitation (supervised) learning approach, similar to [49, 39]. Thus, for each decision, we compute the cross-entropy with respect to the target decision. We force the agent to take the target decision afterward so the generated code does not digress from our example code.

Neural architecture. Here, we present in detail the architecture of the neural model we employ for code generation. Similar to [39], we employ an LSTM-based [50] recurrent neural network. We first convert code tokens to indexes based on a dictionary, then we pass them through an embedding layer. We do the same with the numeric representation of the budget (introduced previously). We
concatenate both embeddings and pass them through a two-layer LSTM. Last, we convert the output of the LSTM to logits for each entry in the dictionary using a linear layer. The architecture can be observed in Figure 10.

<table>
<thead>
<tr>
<th>Input</th>
<th>Code token categorical (0-58)</th>
<th>Budget ordinal (0-16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Embedding</td>
<td>Size = 256</td>
<td>Size = 16</td>
</tr>
<tr>
<td>LSTM 1</td>
<td>Hidden dim = 256</td>
<td></td>
</tr>
<tr>
<td>LSTM 2</td>
<td>Hidden dim = 256</td>
<td></td>
</tr>
<tr>
<td>Linear</td>
<td>Hidden dim × Dict size = 256 × 59</td>
<td></td>
</tr>
</tbody>
</table>

Figure 10: Architecture of the neural model used by the code generator.
D.2 Generating the Visual Puzzle

Puzzle generator visualization. We describe the interaction between the neural model and the underlying symbolic engine for the puzzle generator. We will use a concrete example, visualized in Figure 11. We use an emulator specific to each DSL to execute Cout. Let us consider that the interaction led to the state at time \(t \) presented in Figure 11a. Here, the code execution status is represented by the emulator doing the \texttt{IF(pathRight)} interrogation upon the symbolic executor, and the visual puzzle status represents the avatar with an \textit{unknown} to its right. This requires an interaction between the symbolic engine and the neural model, as depicted in Figure 11b. The neural model receives the current state of the symbolic engine (i.e., puzzle status and code execution status, as in Figure 11a) and outputs the logits for each possible decision (e.g., path to the right or not). The symbolic engine maps the logits to a probability distribution and samples a decision. In our case, the decision is that there is a path to the right. It then executes the upcoming blocks (i.e., \texttt{turnRight}, \texttt{move}) until reaching a new decision point, i.e., \texttt{REPEATUNTIL} (\texttt{goal}). It also computes the reward (as we explain in the next subsection) and passes it back to the neural model. The state at time \(t + 1 \) is given by the new visual puzzle status and the code execution status, which has reached a new decision point \texttt{REPEATUNTIL} (\texttt{goal}), as depicted in Figure 11c. This process can be generalized for every decision and the location/orientation initialization.

Figure 11: Visualization of the interaction process between neural model and the symbolic engine in the puzzle generator component of NeURTaskSYN. (a) shows the state at time \(t \), comprised of the visual aspect of the puzzle and the code execution status. (b) shows the interaction between the symbolic engine and the neural model at time \(t \), where the symbolic engine first passes the state to the neural model, the neural model outputs the logits for the decision, and then, the symbolic engine, after sampling and executing a decision, offers a reward to the neural model. (c) shows the new state at time \(t + 1 \), comprised of the new visual aspect of the puzzle and the updated code execution status.

```python
def Run(){
    REPEATUNTIL(goal){
        IF(pathRight){
            turnRight
        } Else{
            turnLeft
        } move
    } move
}
```
Reinforcement learning procedure. We describe the details necessary for training our neural model for puzzle generation as a reinforcement learning (RL) agent. In the usual RL setting, the agent interacts with an environment, modelled as a Markov Decision Process (MDP) [51]. The MDP is a tuple \(M = (S, A, P, R, S_0) \), where:

- \(S \) is the set of possible states \(s \). A state \(s \) is given by the current puzzle status, the current code execution status, and the current code trace (see Figures 11a and 11c);
- \(A = \bigcup_{s \in S} A_s \) is the set of all possible decisions, and \(A_s \) is the set of decisions possible in state \(s \);
- \(P : S \times A \times S \rightarrow \mathbb{R} \) denotes the transition dynamics. \(P(s'|s,a) \) is defined only for \(a \in A_s \). We have \(P(s'|s,a) = 1 \) for \(s' = s \oplus a \), and 0 otherwise;
- \(R : S \times A \rightarrow \mathbb{R} \) denotes the reward function. \(R(s,a) \) is defined only for \(a \in A_s \). We consider a sparse reward setting, where the reward is only given at the end when the code emulation process is complete, and a puzzle is generated. We use the score w.r.t. \(F_{\text{score}} \) as the reward.
- \(S_0 \subseteq S \) is the set of initial states. This can be any viable configuration of the grid. The current code trace is empty, and the code execution has not started yet.

We consider an episodic, finite horizon setting. This means that starting from an initial state \(s_0 \), the agent interacts with the environment over discrete timesteps \(t \). The episode ends either when the code emulation finishes or the episode length exceeds a pre-specified maximum number of timesteps.

To learn the policy, we use policy gradient methods. These methods generally learn by using gradient ascent, thus updating the parameters \(\theta \) of the parameterized policy \(\pi_\theta(a|s) \) to increase the expected reward of the policy in the MDP. Naturally, a neural network can be used to learn the policy, where \(\theta \) represents the network’s weights. The network would take action \(a \) and state \(s \) as input, outputting a logit \(H_\theta(a|s) \). Given the logits, we map them to a probabilistic distribution using softmax: \(\pi_\theta(a|s) = \frac{\exp(H_\theta(a|s))}{\sum_{a' \in A_s} \exp(H_\theta(a'|s))} \).

We use an Actor-Critic method for training our agent. We denote with \(\hat{v}(s,w) \) the value for state \(s \) predicted by the critic with parameters \(w \). As we operate on batches, the parameters of both the actor and the critic remain unchanged until a buffer is filled with a fixed number of episodes. Thus, for an initial state \(s_0 \) (i.e., an empty or pre-initialized task and a code, with the emulator reset), we execute the existing policy \(\pi_\theta \) until the buffer is filled, generating several sequences of experience as tuples \((s_t, a_t, r_t)_{t=0..T} \), where \(T \) represents a variable episode length. Thus, the losses for an episode are computed as a sum over the timesteps \(t \in [0, T] \) as follows, for the actor (Equation 1) and for the critic (Equation 2) employing the smooth L1 loss, denoted as L1_smooth:

\[
\text{Loss}_\theta = \sum_{t=0}^{T} \left(\sum_{\tau=t}^{T} r_\tau - \hat{v}(s_t, w) \right) \cdot \nabla_\theta \log(\pi_\theta(a_t|s_t))
\]

\[
\text{Loss}_w = \sum_{t=0}^{T} \text{L1_smooth} \left(\sum_{\tau=t}^{T} r_\tau, \hat{v}(s_t, w) \right)
\]

Finally, \(\theta \) and \(w \) are updated by using the computed losses over the entire batch, multiplied with a learning rate.

Neural architecture. We describe the architecture of the CNN-based neural model used by the puzzle generator. We employ a similar architecture for both the HoCMaze and Karel domains, as presented in Figure 12. Only the input size for the grid (i.e., \(D \times 16 \times 16 \), where \(D = 12 \) for HoCMaze and \(D = 14 \) for Karel) and code features (i.e., \(F \), where \(F = 9 \) for HoCMaze and \(F = 12 \) for Karel) differ. We process the grid by 3 CNN blocks (i.e., one block composed of Conv2D, ReLU, and MaxPooling2D layers), after which we apply 5 fully connected (linear) layers, thus obtaining the grid embedding. To the grid embedding, we concatenate the code features, which are represented in a binary manner (e.g., increase in coverage, current decision type). We then pass the concatenated tensor through an additional fully-connected layer, and its output is then passed to both the action head and the value head (i.e., necessary for the Actor-Critic algorithm).
<table>
<thead>
<tr>
<th>Input</th>
<th>D × 16 × 16 Grid</th>
<th>CNN Block 1</th>
<th>Conv2D, kernel size = 3, padding 1, 64 × 64 ReLU MaxPool2D, kernel size = 2, padding 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code features, Size = F</td>
<td></td>
<td>CNN Block 2</td>
<td>Conv2D, kernel size = 3, padding 1, 64 × 64 ReLU MaxPool2D, kernel size = 2, padding 0</td>
</tr>
<tr>
<td>Linear 1</td>
<td>CNN output size (256) × 1024</td>
<td>Linear 2</td>
<td>1024 × 512</td>
</tr>
<tr>
<td>Linear 3</td>
<td>512 × 256</td>
<td>Linear 4</td>
<td>256 × 128</td>
</tr>
<tr>
<td>Linear 5</td>
<td>128 × 32</td>
<td>Linear 6</td>
<td>Concatenated features size (32 + F) × 8</td>
</tr>
<tr>
<td>Linear 7 (Action and Value)</td>
<td>8 × action space</td>
<td>Linear 7</td>
<td>8 × 1</td>
</tr>
</tbody>
</table>

Figure 12: Architecture of the neural model used by the puzzle generator. D denotes the depth of the input grid and F denotes the size of the code features tensor, both different for each of the HoCMaze and Karel domains.
E Experimental Evaluation with Synthetic Task Specifications

In this section, we train and evaluate NEURTASKSYN on synthetic datasets of task specifications. We consider two popular visual programming domains: Hour of Code: Maze Challenge by Code.org (HoCMaze) [19, 20] and Karel [21], as introduced in Sections 1 and 2. Both these programming domains have been studied extensively in the literature on program/task synthesis [39, 54, 25, 33, 88] and computing education [55, 56, 57]. We train and evaluate different variants of NEURTASKSYN to quantify the utility of individual components. We also detail the instantiations of the scoring functions, giving more insight into the synthetic dataset creation process, and show the details of the training processes for both the code generator and the task generator.

E.1 Domain-specific elements

We begin by defining a few domain-specific elements that are important for evaluation in this section. As introduced in Section 2, we use two DSLs shown in Figures 13b and 13c adapted from the DSLs as introduced in Sections 1 and 2. Both these programming languages are comprised of different components: (i) \(F_{\text{HoCMaze}} \) correctly solves \(T_{\text{puzzle}} \) out; (ii) \(F_{\text{Karel}} \) evaluates the visual quality of \(C_{\text{out}} \) for each of the HoCMaze and Karel domains are defined in Equations 3 and 4 and shown in Table 5.

E.2 Scoring Function \(F_{\text{score}} \)

As mentioned in Section 3, we will use domain-specific scoring functions \(F_{\text{HoCMaze}} \) and \(F_{\text{Karel}} \) to capture quality of a visual programming task. In our work, we adapt scoring functions used in [25]. These scoring functions will be used in different ways throughout this section: (a) during training of NEURTASKSYN’s puzzle generator as a reward for RL agent and during inference to select an output task from candidates; (b) when evaluating different techniques with a surrogate metric based on these scoring functions; (c) when creating synthetic dataset.

Next, we describe the two instantiations for \(F_{\text{score}} \) as used in the two domains HoCMaze and Karel. We adopt a scoring function similar to that of [25], where \(F_{\text{score}} \) is used for guiding a Monte Carlo Tree Search, as an evaluation function that describes the desired properties of their system’s output. We note that our method can work with any other instantiation of the scoring function \(F_{\text{score}} \). The instantiations we use for \(F_{\text{score}} \) for each of the HoCMaze and Karel domains are defined in Equations 3 and 4 and are comprised of different components: (i) \(F_{\text{HoCMaze}}(\alpha) \), (ii) \(F_{\text{Karel}}(\alpha) \) computes the coverage ratio, i.e., ratio of executed blocks to total number of blocks; (iii) \(F_{\text{HoCMaze}}(\alpha) \) correctly solves \(T_{\text{puzzle}} \) out, i.e., no crash; (iv) \(F_{\text{Karel}}(\alpha) \) evaluates to 1 if \(C_{\text{out}} \); (v) \(F_{\text{Karel}}(\alpha) \) evaluates to 0 if there is a shortcut sequence comprised of basic actions; (vi) \(F_{\text{Karel}}(\alpha) \) evaluates visual quality of \(T_{\text{puzzle}} \) out, as per Equation 5; (vii) \(F_{\text{Karel}}(\alpha) \) evaluates visual quality of the shortest path made only of basic actions, similar to \(F_{\text{qual}} \). We set \(\alpha_1 = \frac{1}{2} \) and \(\alpha_2 = \frac{1}{2} \).

\[
F_{\text{HoCMaze}}(\alpha) = \left[F_{\text{cov}}(T_{\text{puzzle}}^{\text{out}}, C_{\text{out}}^{\text{out}}) = 1, F_{\text{sol}}(T_{\text{puzzle}}^{\text{out}}, C_{\text{out}}^{\text{out}}) = 1, F_{\text{nocross}}(T_{\text{puzzle}}^{\text{out}}, C_{\text{out}}^{\text{out}}) = 1, \right.
\]
\[
\left. F_{\text{notred}}(T_{\text{puzzle}}^{\text{out}}, C_{\text{out}}^{\text{out}}) = 1, \alpha_1 F_{\text{cov}}(T_{\text{puzzle}}^{\text{out}}, C_{\text{out}}^{\text{out}}) + \alpha_2 F_{\text{qual}}(T_{\text{puzzle}}^{\text{out}}, C_{\text{out}}^{\text{out}}) \right]
\]

\[
(3)
\]

\[
F_{\text{Karel}}(\alpha) = \left[F_{\text{cov}}(T_{\text{puzzle}}^{\text{out}}, C_{\text{out}}^{\text{out}}) = 1, F_{\text{sol}}(T_{\text{puzzle}}^{\text{out}}, C_{\text{out}}^{\text{out}}) = 1, F_{\text{nocross}}(T_{\text{puzzle}}^{\text{out}}, C_{\text{out}}^{\text{out}}) = 1, \right.
\]
\[
\left. F_{\text{notred}}(T_{\text{puzzle}}^{\text{out}}, C_{\text{out}}^{\text{out}}) = 1, \alpha_3 F_{\text{cov}}(T_{\text{puzzle}}^{\text{out}}, C_{\text{out}}^{\text{out}}) + \alpha_4 F_{\text{qual}}(T_{\text{puzzle}}^{\text{out}}, C_{\text{out}}^{\text{out}}) + \alpha_5 F_{\text{cutqual}}(T_{\text{puzzle}}^{\text{out}}, C_{\text{out}}^{\text{out}}) \right]
\]

\[
(4)
\]
All 295 Hard (depth, constructs) 183 69 47
(3, 2) 136 581

<table>
<thead>
<tr>
<th>Domain</th>
<th>All</th>
<th>Easy</th>
<th>Hard</th>
</tr>
</thead>
<tbody>
<tr>
<td>HoCMaze</td>
<td>1.016</td>
<td>183</td>
<td>136</td>
</tr>
<tr>
<td>Karel</td>
<td>1.027</td>
<td>300</td>
<td>295</td>
</tr>
</tbody>
</table>

(a) Dataset of synthetic task specifications

```
code C := def Run () do y
rule y := s | g | s, g
rule g := a | s | IF (b) do s | IF (b) do s ELSE s
| REPEAT (x) do s
rule g := REPEAT UNTIL (goal) do s
action a := move | turnLeft | turnRight
bool b := pathAhead | pathLeft | pathRight
iter x := 2134151617181910
```

(b) DSL for HoCMaze domain

```
code C := def Run () do s
rule s := a | s | IF (b) do s | IF (b) do s ELSE s
| WHILE (b) do s | REPEAT (x) do s
action a := move | turnLeft | turnRight | putMarker | pickMarker
bool b := pathAhead | pathLeft | pathRight
iter x := 2134151617181910
```

(c) DSL for Karel domain

Figure 13: (a) Synthetic datasets used for training/evaluation. (b) DSLs for two domains.

We use the same measure of visual quality for both domains, keeping into account the number of moves, turns, segments, long-segments, and turn-segments, as explained next. More specifically, segments and long-segments correspond to consecutive sequences of ‘moves’ containing more than 3 and 5 actions, respectively; turn-segments correspond to consecutive sequences of ‘turnLeft’ or ‘turnRight’ containing more than 3 actions. The formula for F_{qual} is given in Equation 5 below; we also clip the values for each counter $#$ w.r.t. its corresponding normalization factor (not depicted here for brevity).

$$F_{qual}(T_{out}, C_{out}) = \frac{3}{4} \left[\frac{1}{4} \left(\frac{\# \text{moves}}{2n} + \frac{\# \text{turns}}{n} + \frac{\# \text{segments}}{n/2} + \frac{\# \text{long-segments}}{n/3} \right) \right] + \frac{1}{4} \left(1 - \frac{\# \text{turn-segments}}{n/2} \right)$$

(5)

E.3 Synthetic task specifications

For training and evaluation of techniques, we create a dataset of synthetic task specifications per domain, referred to as $D := \{ \psi^m \}$. Figure 13a provides a summary of datasets D for each domain. Next, we provide an overview of how we create a dataset per domain. To create one specification $\psi^m := (\psi^m_{\text{puzzle}}, \psi^m_{\text{sketch}}, \psi^m_{\Delta}, \psi^m_{\text{size}})$, the most crucial part is getting a code sketch ψ^m_{sketch} that respects the DSL and can lead to a valid code generation. We start by sampling a code C^m from the DSL for a given structure, depth, and constructs – this sampling process is inspired by methods for synthetic puzzle generation. We follow Algorithm 1 to create dataset D. For each sampled code, we check its semantic validity, i.e., this code can lead to a high-quality task. For this purpose, we make use of an offline, time-intensive, method TASKORACLE(C): it does one million symbolic executions of a given code C and returns highest-scoring task w.r.t. scoring function F_{score}. We filter them out if a low-quality task is obtained, supplementing this filtering with an additional inspection step. This inspection step is necessary because semantic irregularities (e.g., IF/ELSE with the same IF and ELSE bodies) can get past the previous filtering step. As the compute and implementation efforts are larger for an automated system that would detect such irregularities, which are easy to spot, we opt for a direct inspection step. Afterwards, for a sampled code C^m for which TASKORACLE(C^m) succeeds, we create its corresponding ψ^m_{sketch} by keeping only the programming constructs (loops/conditions) with a random subset of the booleans/iterators masked out. The rest of the ψ^m elements are instantiated as follows: ψ^m_{puzzle} is 16×16 size without any initialization, ψ^m_{Δ} only allows filling in the sketch with basic actions (without any constructs) and booleans/iterators, and ψ^m_{size} is randomly initialized in the range $[\psi_{\text{min}}^{\text{size}}, 17]$. In our evaluation, we split D as follows: 80% for training the neural models (D_{train}), 10% for validation (D_{val}), and a fixed 10% for evaluation (D_{test}).
Algorithm 1: Specification Dataset Collection Procedure

Input: list S of tuples $(\text{code structure } s, \text{required size } l)$; maximum candidate set size m;
$D \leftarrow \emptyset$; /* Dataset initialized to empty set */

foreach $(s, l) \in S$ do
 $C \leftarrow \emptyset$; /* Candidate set initialized to empty set */
 while size(C) < m do
 code \leftarrow GenerateCode(s);
 task \leftarrow TASKORACLE(code);
 score \leftarrow F_{score}(task, code);
 if score > 0 then
 add (code, task, score) to C;
 sort C according to the score, in decreasing order;
 counter $\leftarrow 0$;
 while counter $< l$ and $C \neq \emptyset$ do
 (code, task, score) \leftarrow Pop(C);
 accept \leftarrow Inspect(task, code) ; /* Inspection step */
 if accept then
 $\psi \leftarrow$ ExtractSpecs(code);
 add ψ to D;
 counter \leftarrow counter + 1;
 end while
end foreach

Output: Dataset D;

E.4 Training Process

Training the code generator. We employ a standard approach, using an imitation (supervised) form of learning, with a cross-entropy loss for an LSTM-based architecture (see Appendix D). We augment D_{train} by adding all the possible combinations of construct instantiations for a given code. The training plots and the hyperparameters used can be seen in Figure 14. We report the validation performance (i.e., same metric employed for NEURCODEGEN) smoothed via an exponential decay function, and the batch loss averaged over one epoch.

![Training plots](image)

<table>
<thead>
<tr>
<th>HyperParameter</th>
<th>HoCMaze</th>
<th>Karel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Epochs</td>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>Batch Size</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Learning Rate</td>
<td>5×10^{-4}</td>
<td>5×10^{-4}</td>
</tr>
<tr>
<td>Dict. Size</td>
<td>59</td>
<td>59</td>
</tr>
<tr>
<td>Max. Blocks</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>

Figure 14: Illustration of training details for the code generator. (a) and (b) show the training curves with mean epoch loss and validation performance, based on metric M, for both the HoCMaze and Karel domains. (c) shows the hyperparameters employed for the code generator training.

Training the puzzle generator. We use an RL procedure, using the instantiations of F_{score} as rewards. We augment the RL training set with additional codes produced by the previously trained code generator. To encourage higher quality tasks, we use a form of curriculum as follows: after a certain epoch, we give a reward larger than 0 only if the ratio between the scores of the output task and the TASKORACLE’s task is larger than a factor λ_2; we gradually increase λ_2 from 0.8 to 0.9. For Karel, we also employ a temperature parameter during training, encouraging exploration during inference. The training plots and the hyperparameters used can be seen in Figures 15. We report the validation performance (i.e., same metric employed for NEURPUZZLEGEN) smoothed via an exponential decay function, and the batch reward averaged over one epoch.
Further implementation details. We limit the number of possible initial locations for a grid to one representative per quadrant. In total, we consider 5 quadrants (i.e., top-left, bottom-left, center, top-right, bottom-right). We do this to limit the action space to a more tractable amount for a variable grid size. With 5 quadrants and 4 possible orientations, this leads to $5 \times 4 = 20$ possible initial location/orientation pairs, offering already enough variability.

F Evaluation on the synthethic dataset

Techniques evaluated. First we describe NEURTASKSYN, our main task synthesis technique from Section 3. For each domain (HoCMaze and Karel), we train a separate instance of NEURTASKSYN using the synthetic dataset introduced above. In Section 3, we described the generation process for a single “rollout”, i.e., one C^{out} and one puzzle $T_{\text{puzzle}}^{\text{out}}$ is generated. In practice, we use multiple rollouts to select a final output task T^{out}. More concretely, at inference time for a given ψ^{in} as input, NEURTASKSYN generation process is captured by two parameters: number of code rollouts c by the code generator and number of puzzle rollouts p by the puzzle generator for each generated code. We denote these hyperparameters in subscript, e.g., NEURTASKSYN$_{c \times p}$ for 5×10 rollouts. Out of these $c \times p$ candidates, the technique outputs one task T^{out} along with solution code C^{out} using its scoring function. Next, we describe different variants of NEURTASKSYN$_{c \times p}$ and baselines:

- **NEURCODEGEN$_{c \times p, \text{OPT}}$**: This technique is a variant of NEURTASKSYN$_{c \times p}$ to evaluate its code generation component, assuming access to high quality puzzle generator. More concretely, we replace the puzzle generator component of NEURTASKSYN with TASKORACLE used for creating synthetic dataset. At inference time, NEURCODEGEN$_{c \times p, \text{OPT}}$ generation process is captured by hyperparameter c, i.e., the number of code rollouts; we use TASKORACLE to generate a puzzle for each generated code. Out of c candidates, the technique outputs one task analogous to NEURTASKSYN.

- **NEURPUZZLEGEN$_{c \times p, \text{FIX}}$**: This technique is a variant of NEURTASKSYN$_{c \times p}$ to evaluate its puzzle generation component, assuming the code generator has access to code C^{in} associated with specification ψ^{in} in the dataset. At inference time, NEURPUZZLEGEN$_{c \times p, \text{FIX}}$ generation process is captured by hyperparameter p, i.e., the number of puzzle rollouts. Out of p candidates, the technique outputs one task analogous to NEURTASKSYN.

- **BASETASKSYN$_{c \times p}$, BASECODEGEN$_{c \times p, \text{OPT}}$, BASEPUZZLEGEN$_{c \times p, \text{FIX}}$**: These techniques operate similar to NEURTASKSYN$_{c \times p}$ and its variants, but use only symbolic engine with random search.

Evaluation metrics. Next we introduce a binary success metric $\mathcal{M}(\psi^{\text{in}}, T^{\text{out}}, C^{\text{out}})$ that is used to compare the performance of different techniques and to pick hyperparameters. More concretely, $\mathcal{M}(\psi^{\text{in}}, T^{\text{out}}, C^{\text{out}})$ is 1 if the following hold: (i) the task T^{out} is valid w.r.t. ψ^{in} as per objective O1: Validity in Section 2; (ii) the generated code C^{out} is semantically correct in a sense that it

2TaskORACLE(C) introduced above uses BASEPUZZLEGEN with $p = 10^6$ rollouts for a fixed code C.

<table>
<thead>
<tr>
<th>HyperParameter</th>
<th>HoCMaze</th>
<th>Karel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Epochs</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Batch Size</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>Learning Rate</td>
<td>10^{-4}</td>
<td>10^{-4}</td>
</tr>
<tr>
<td>Temperature</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Curriculum</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>
Table 1: Results for HoCMaze and Karel; see Figure 13a.

<table>
<thead>
<tr>
<th>Technique</th>
<th>HoCMaze All</th>
<th>HoCMaze Easy</th>
<th>HoCMaze Hard</th>
<th>Karel All</th>
<th>Karel Easy</th>
<th>Karel Hard</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASETaskSYN_{c, p}</td>
<td>13.6 (1.3)</td>
<td>46.2 (4.1)</td>
<td>2.0 (1.3)</td>
<td>35.7 (1.0)</td>
<td>49.3 (0.9)</td>
<td>10.9 (2.7)</td>
</tr>
<tr>
<td>NEURTaskSYN_{c, p}</td>
<td>81.4 (3.7)</td>
<td>100.0 (0.0)</td>
<td>74.3 (5.1)</td>
<td>92.6 (1.4)</td>
<td>100.0 (0.0)</td>
<td>79.3 (3.9)</td>
</tr>
<tr>
<td>BASECodeGEN_{c, p}</td>
<td>22.3 (3.8)</td>
<td>47.8 (5.4)</td>
<td>13.2 (4.0)</td>
<td>40.8 (2.4)</td>
<td>51.7 (0.5)</td>
<td>20.8 (6.2)</td>
</tr>
<tr>
<td>NEURCodeGEN_{c, p}</td>
<td>93.1 (1.0)</td>
<td>100.0 (0.0)</td>
<td>90.5 (1.4)</td>
<td>98.1 (0.6)</td>
<td>100.0 (0.0)</td>
<td>94.6 (1.6)</td>
</tr>
<tr>
<td>BASEPuzzleGEN_{p, t}</td>
<td>55.6 (1.8)</td>
<td>91.7 (2.4)</td>
<td>41.9 (2.3)</td>
<td>71.8 (3.8)</td>
<td>86.6 (3.8)</td>
<td>45.0 (3.9)</td>
</tr>
<tr>
<td>NEURPuzzleGEN_{p, t}</td>
<td>78.4 (2.5)</td>
<td>100.0 (0.0)</td>
<td>70.3 (3.4)</td>
<td>79.8 (0.6)</td>
<td>92.0 (1.3)</td>
<td>57.7 (1.8)</td>
</tr>
</tbody>
</table>

Figure 16: Results on synthetic task specifications for HoCMaze and Karel; see Figure 13a.

(a) BASETaskSYN, NEURTaskSYN (b) BASECodeGEN, NEURCodeGEN (c) BASEPuzzleGEN, NEURPuzzleGEN

Figure 17: (a) Results for BASETaskSYN_{c, p} and NEURTaskSYN_{c, p} by increasing code rollouts c from 1 to 5 with fixed puzzle rollouts p = 10. (b) Results for BASECodeGEN_{c, p; OPT} and NEURCodeGEN_{c, p; OPT} by increasing code rollouts c from 1 to 5. (c) Results for BASEPuzzleGEN_{p, t} and NEURPuzzleGEN_{p, t} by increasing puzzle rollouts p from 1 to 100.

This can lead to a valid task via TaskOracle, i.e., \(F_{\text{score}}(\text{TaskOracle}(C^{\text{out}}), C^{\text{out}}) > \lambda_1 \); (iii) the generated task \(T^{\text{out}} \) is good quality in comparison to the oracle-generated task, i.e., \(F_{\text{score}}(T^{\text{out}}, C^{\text{out}}) > \lambda_2 \cdot F_{\text{score}}(\text{TaskOracle}(C^{\text{out}}), C^{\text{out}}) \). We use \(\lambda_1 = 0 \) and \(\lambda_2 = 0.9 \) in our experiments. For each technique, performance is computed as % success rate across \(D^{\text{train}} \) w.r.t. \(M \); in total, we compute performance across three seeds and report averaged results as mean (stderr). Importantly, we note that this metric only serves as a surrogate metric for evaluation on synthetic dataset; the neural models trained here will be evaluated on real-world task specifications w.r.t. the synthesis objectives in the next section.

Results. Figure 16 reports evaluation results for different techniques for a fixed number of code/puzzle rollouts across two domains and segments. Figure 17 further report results as we vary the rollouts for different techniques. In summary, these results demonstrate the utility of different components of NEURTaskSYN and how the synthesis quality improves as we increase the number of rollouts.
G Experimental Evaluation with Real-World Task Specifications: Details

G.1 Real-World Task Specifications

In Figures 18 and 19 below, we list the source tasks T and codes C for the 10 task specifications mentioned in Figure 3.

(a) Source T for ψ_0

\[T_{store} = \{\text{move}, \text{turnLeft}, \text{turnRight}, \text{REPEAT}\}\]

$T_{size} = 5$

(b) Source C for ψ_0

\[
\text{def Run()}{\}
\begin{align*}
\text{Repeat(3)}{&}\{ \\
\text{move} & \\
\text{move} & \\
\text{turnRight} & \\
\}\}
\end{align*}
\]

(c) Source T for ψ_1

\[T_{store} = \{\text{move}, \text{turnLeft}, \text{turnRight}, \text{REPEATUNTIL}\}\]

$T_{size} = 6$

(d) Source C for ψ_1

\[
\text{def Run()}{\}
\begin{align*}
\text{RepeatUntil(goal)}{&}\{ \\
\text{turnRight} & \\
\text{move} & \\
\text{turnLeft} & \\
\text{move} & \\
\}\}
\end{align*}
\]

(e) Source T for ψ_2

\[T_{store} = \{\text{move}, \text{turnLeft}, \text{turnRight}, \text{REPEAT}\}\]

$T_{size} = 6$

(f) Source C for ψ_2

\[
\text{def Run()}{\}
\begin{align*}
\text{Repeat(4)}{&}\{ \\
\text{move} & \\
\text{turnLeft} & \\
\text{REPEAT(5)}{&}\{ \\
\text{move} & \\
\}\}
\end{align*}
\]

(g) Source T for ψ_3

\[T_{store} = \{\text{move}, \text{turnLeft}, \text{turnRight}, \text{REPEATUNTIL, IFELSE}\}\]

$T_{size} = 5$

(h) Source C for ψ_3

\[
\text{def Run()}{\}
\begin{align*}
\text{RepeatUntil(goal)}{&}\{ \\
\text{IF(pathAhead)}{&}\{ \\
\text{move} & \\
\}\} \\
\text{ELSE}{{ \text{turnLeft} } & \\
\}\}
\end{align*}
\]

(i) Source T for ψ_4

\[T_{store} = \{\text{move}, \text{turnLeft}, \text{turnRight}, \text{REPEATUNTIL, IF}\}\]

$T_{size} = 7$

(j) Source C for ψ_4

\[
\text{def Run()}{\}
\begin{align*}
\text{RepeatUntil(goal)}{&}\{ \\
\text{IF(pathLeft)}{&}\{ \\
\text{turnLeft} & \\
\}\} \\
\text{IF(pathRight)}{&}\{ \\
\text{turnRight} & \\
\}\}
\end{align*}
\]

Figure 18: Overview of HoCMaze sources.
def Run(){
 move
 move
 putMarker
}

T_{\text{size}} = 6

(a) Source T for ψ_5

def Run(){
 while(pathAhead){
 move
 turnLeft
 move
 turnRight
 putMarker
 }
}

T_{\text{size}} = 8

(b) Source C for ψ_5

def Run(){
 while(pathAhead){
 move
 turnLeft
 move
 turnRight
 putMarker
 }
}

T_{\text{size}} = 8

(c) Source T for ψ_6

def Run(){
 while(pathAhead){
 move
 turnLeft
 move
 turnRight
 putMarker
 }
}

T_{\text{size}} = 10

(d) Source C for ψ_6

def Run(){
 while(no-pathAhead){
 if(markerPresent){
 pickMarker
 }
 turnLeft
 move
 }
}

T_{\text{size}} = 8

(e) Source T for ψ_7

def Run(){
 while(pathAhead){
 move
 repeat(4){
 pickMarker
 }
 }
}

T_{\text{size}} = 8

(f) Source C for ψ_7

def Run(){
 while(no-pathAhead){
 if(markerPresent){
 pickMarker
 }
 turnLeft
 move
 turnRight
 move
 }
}

T_{\text{size}} = 5

(g) Source T for ψ_8

def Run(){
 while(pathAhead){
 move
 repeat(4){
 pickMarker
 }
 }
}

T_{\text{size}} = 5

(h) Source C by ψ_8

def Run(){
 while(pathAhead){
 move
 Repeat(4){
 pickMarker
 }
 }
}

T_{\text{size}} = 5

(i) Source T for ψ_9

def Run(){
 while(pathAhead){
 move
 Repeat(4){
 pickMarker
 }
 }
}

T_{\text{size}} = 5

(j) Source C by ψ_9

Figure 19: Overview of Karel sources.
G.2 GPT4TaskSYN

We describe next the details of our interaction with GPT-4 for generating the visual puzzles T_{out} and the intermediate code C_{out} via the GPT4TaskSYN technique. Our interaction is conducted through the platform [12]. We try several strategies and prompts to make GPT-4 work for synthesizing visual programming tasks, as it tends to struggle with logical and spatial reasoning. Thus, we opt for a two-stage task synthesis process which works the best. We first ask GPT-4 to generate a code C_{out} for ψ^{in}, by using 5 separate queries. We start with an initial prompt and then use follow-up prompts to fix any mistakes, as GPT-4 occasionally ignores part of the specifications. The initial and follow-up prompts used for generating C_{out} are presented in Figures 20a and 21a. We select the best code generated during the 5 separate queries based on our expertise. The second stage comprises of additional 5 separate queries for generating T_{puzzle} for the selected code C_{out}. Again, we start with an initial prompt and then use follow-up prompts to fix any issues. The follow-up prompts are necessary because GPT-4 tends to struggle with spatial orientation and with the relationship between C_{out} and T_{puzzle}. The initial and follow-up prompts used for generating T_{puzzle} are presented in Figures 20b and 21b. Similar to the code selection process, we select the best visual puzzle generated during the 5 separate queries based on our expertise. Once we get C_{out} and T_{puzzle}, we set other elements of the task, T_{store} and T_{size}, as done for BASETaskSYN and NEURTASKSYN.
I am working in the block-based visual programming domain of Hour of Code: Maze Challenge from code.org. In this domain, the following types of coding blocks are available:

- Basic action blocks: move forward, turn left, turn right.
- Boolean conditions: path ahead, path left, path right.
- Loops: repeatUntil(goal), repeat(int).
- Conditionals: if(boolean), if(boolean) else.

In this domain, a task is represented as an 8x8 visual grid that contains WALL cells, FREE cells, AVATAR (with specific location and direction), and GOAL. We represent a task’s 8x8 visual grid with the following symbols.

represents a WALL cell.
+ represents a FREE cell.
* represents GOAL.
E represents AVATAR’s location facing East direction.
W represents AVATAR’s location facing West direction.
N represents AVATAR’s location facing North direction.
S represents AVATAR’s location facing South direction.

Below, I am giving you a program structure. Can you generate a code that respects this program structure?

--- Structure ---

[SKETCH]

You should not change the structure. This means that you shouldn’t add or remove any loops (e.g., repeatUntil(goal), repeat(int)) and conditionals (e.g., if(boolean), if(boolean) else). The program needs to be valid, meaning that bodies of constructs cannot remain empty. To complete this given structure, you can use basic action blocks, boolean conditions, and iteration numbers that are available in the Hour of Code: Maze Challenge programming.

--- Code ---

Your code does not follow the program structure I have given. You shouldn’t add or remove any loops (e.g., repeatUntil(goal), repeat(int)) and conditionals (e.g., if(boolean), if(boolean) else). Can you try to generate a new code for the same structure?

Your code could be improved! You can think of producing a better code by reasoning about the AVATAR’s actions when the code is executed. Can you try to generate a new code respecting the program structure I have given?

(a) Prompts used for obtaining C_{out}
Task: Initial prompt

I am working in the block-based visual programming domain of Hour of Code: Maze Challenge from code.org. In this domain, the following types of coding blocks are available:

- Basic action blocks: move forward, turn left, turn right.
- Boolean conditions: path ahead, path left, path right.
- Loops: repeatUntil(goal), repeat(int).
- Conditionals: if(boolean), if(boolean)else.

In this domain, a task is represented as an 8x8 visual grid that contains WALL cells, FREE cells, AVATAR (with specific location and direction), and GOAL. We represent a task’s 8x8 visual grid with the following symbols.

represents a WALL cell.
+ represents a FREE cell.
* represents GOAL.
E represents AVATAR’s location facing East direction.
W represents AVATAR’s location facing West direction.
N represents AVATAR’s location facing North direction.
S represents AVATAR’s location facing South direction.

Below I am giving you a solution code. Can you generate a task with 8x8 visual grid that would be solved by this code?

— Solution —

[CODE]

The visual grid must contain AVATAR (with specific location and direction) along with GOAL, and can have WALL cells and FREE cells. Number your grid with row numbers (1 to 8) and column numbers (1 to 8). Also, you should tell me the position of AVATAR and GOAL in your generated task so we are sure about the numbering.

You can verify the correctness of your generated task by executing the solution code on your task. A solution code for a task takes AVATAR to GOAL when executed. Note that AVATAR can only move on FREE cells and will crash if it tries to go to a WALL cell. If your generated task is not correct, you should try again to generate a correct task.

— Task —

Task: Follow-up prompt for any issues

Your code does not solve the generated grid. Be careful with the AVATAR as it should reach the goal after the code execution. Keep the code fixed. Can you try to generate a new visual grid and explain your reasoning? Recall that your code, when executed, should take the AVATAR from its initial location to the GOAL.

(b) Prompts used for obtaining the main part of puzzle

Figure 20: Prompts used in the implementation of GPT4TASKSYN technique for HoCMaze domain.
I am working in the block-based visual programming domain of Karel programming. In this domain, the following types of coding blocks are available:
- Basic action blocks: move forward, turn left, turn right, pick marker, put marker.
- Boolean conditions: path ahead, path left, path right, marker present, no path ahead, no marker present.
- Loops: while(boolean), repeat(int).
- Conditionals: if(boolean), if(boolean) else.

In this domain, a task is represented as a pair of 10x10 visual pregrid and 10x10 visual postgrid. This pregrid and postgrid contain WALL cells, FREE cells, AVATAR (with specific location and direction), and markers. We represent a task’s 10x10 visual pregrid and postgrid with the following symbols.
represents a WALL cell.
+ represents a FREE cell.
m represents a cell with marker.
E represents AVATAR’s location on a cell without marker, facing East direction.
W represents AVATAR’s location on a cell without marker, facing West direction.
N represents AVATAR’s location on a cell without marker, facing North direction.
S represents AVATAR’s location on a cell without marker, facing South direction.
Em represents AVATAR’s location on a cell with marker, facing East direction.
Wm represents AVATAR’s location on a cell with marker, facing West direction.
Nm represents AVATAR’s location on a cell with marker, facing North direction.
Sm represents AVATAR’s location on a cell with marker, facing South direction.

Below, I am giving you a program structure. Can you generate a code that respects this program structure?

— Structure —
[SKETCH]

You should not change the structure. This means that you shouldn’t add or remove any loops (e.g., while(boolean), repeat(int)) and conditionals (e.g., if(boolean), if(boolean) else). The program needs to be valid, meaning that bodies of constructs cannot remain empty. To complete this given structure, you can use basic action blocks, boolean conditions, and iteration numbers that are available in Karel programming.

— Code —

Your code does not follow the programming structure I have given. You shouldn’t add or remove any loops (e.g., while(boolean), repeat(int)) and conditionals (e.g., if(boolean), if(boolean) else). Can you try to generate a new code for the same structure?

Your code could be improved! You can think of producing a better code by reasoning about the Karel AVATAR when the code is executed. Can you try to generate a new code?

(a) Prompts used for obtaining C_{out}
I am working in the block-based visual programming domain of Karel programming. In this domain, the following types of coding blocks are available:
- Basic action blocks: move forward, turn left, turn right, pick marker, put marker.
- Boolean conditions: path ahead, path left, path right, marker present, no path ahead, no marker present.
- Loops: while(boolean), repeat(int).
- Conditionals: if(boolean), if(boolean) else.

In this domain, a task is represented as a pair of 10x10 visual pregrid and 10x10 visual postgrid. This pregrid and postgrid contain WALL cells, FREE cells, AVATAR (with specific location and direction), and markers. We represent a task’s 10x10 visual pregrid and postgrid with the following symbols.

represents a WALL cell.
+ represents a FREE cell.
m represents a cell with marker.
E represents AVATAR’s location on a cell without marker, facing East direction.
W represents AVATAR’s location on a cell without marker, facing West direction.
N represents AVATAR’s location on a cell without marker, facing North direction.
S represents AVATAR’s location on a cell without marker, facing South direction.
Em represents AVATAR’s location on a cell with marker, facing East direction.
Wm represents AVATAR’s location on a cell with marker, facing West direction.
Nm represents AVATAR’s location on a cell with marker, facing North direction.
Sm represents AVATAR’s location on a cell with marker, facing South direction.

Below I am giving you a solution code. Can you generate a task with a pair of 10x10 visual pregrid and 10x10 visual postgrid that would be solved by this code?

--- Solution ---

[CODE]

Both the visual pregrid and visual postgrid must contain AVATAR (with specific location and direction), and can have WALL cells, FREE cells, and markers. Number your grids with row numbers (1 to 10) and column numbers (1 to 10). Also, you should tell me the position of AVATAR in your generated pregrid and postgrid so we are sure about the numbering.

You can verify the correctness of your generated task by executing the solution code on your task. A solution code for a task transforms the pregrid into the postgrid when executed. Note that AVATAR can only move on FREE cells and will crash if it tries to go to a WALL cell. If your generated task is not correct, you should try again to generate a correct task.

--- Task ---

(b) Prompts used for obtaining the main part of \(\tau_* \) puzzle

Figure 21: Prompts used in the implementation of GPT4TASKSYN technique for Karel domain.