
BENCHMARKING EDUCATIONAL PROGRAM REPAIR

Charles Koutcheme1, Nicola Dainese1, Sami Sarsa1, Juho Leinonen2,
Arto Hellas1, Paul Denny2

1Aalto University, 2University of Auckland

BENCHMARKING EDUCATIONAL PROGRAM REPAIR

Charles Koutcheme1, Nicola Dainese1, Sami Sarsa1, Juho Leinonen2,
Arto Hellas1, Paul Denny2

1Aalto University, 2University of Auckland

1. Introduction

Motivation. The emergence of large language models (LLMs) has sparked enormous
interest, particularly in their potential application across various educational tasks. One
task showing great promise is program repair, where LLMs can offer valuable feedback
to students in the form of debugging support and next-step hints.

Problem. Despite the potential of LLMs in program repair, progress in educational AI is
hindered by the use of bespoke datasets and different evaluation metrics in research,
leading to unreliable direct comparisons of results. This lack of standardization calls
for the need to establish benchmarks that enable equitable comparisons between
competing approaches.

Contributions. In this work, we address the challenge by proposing a framework for
evaluating program repair techniques using LLMs. We introduce a unified evaluation
procedure and curate two high-quality publicly available programming datasets suitable
for evaluation. We also provide baseline results of fine-tuned code language models,
offering a step toward much-needed standardization in the field.

2. Methods

Problem setup. Picture a student tackling a programming assignment. We have the
problem description, associated unit tests, and a grader employing these tests for
summative feedback.

Task. Faced with a program failing unit tests, your aim is to train/use an LLM to
generate a repair, addressing all issues in the incorrect code. Below, we summarize
the proposed unified framework.

Problem
description

Buggy
program

Unit
tests

Model input

Functional correctnessCloseness score

Additional
context

Compute closeness
scores

Extract
candidate
repairs

Grader's
feedback

Code
Language

Model
Generation

Evaluation

1 2

34

Model generations

5

Pass Fail

if num(pass) = 0: score = 0

6

Figure 1: Overview of the problem setup and our evaluation methodology.

Model inputs 1

You can feed an LLM any prompt containing, at a minimum, the problem description
and the incorrect student code . Additional contextual information (e.g., instructions)
and, optionally, the grader’s feedback can also be included in the prompt.

Language Models 1 2

You can evaluate any LLM , whether pretrained or instruction-tuned. You can even
fine-tune an existing LLM on your own dataset (what we did).

Generating feedback and extracting candidate repairs 2 3

You would likely generate n outputs from your model, each providing distinct feed-
back containing at least the candidate repairs (and, optionally, explanations). We will
then extract the candidate repairs from these n feedback outputs.

Evaluation procedure 4 5 6

We want the generated programs to be (1) functionally correct, and (2) closely
aligned with the original incorrect program (i.e., we want a small distance between
the incorrect program and the repairs). We use the following metrics:

(1) Functional correctness - pass@k : Estimates the probability that one of the n
candidate repairs passes all unit tests.

(2) Closeness score - rouge@k : A new metric estimating the highest ROUGE
score among the n candidate repairs.

Datasets

We curated two high-quality programming datasets for evaluating LLMs.

FalconCode

• Language: Python

• Split into three semesters

• Various difficulty levels

• Use case: evaluating LLMs when
large amounts of contextual infor-
mation are available

Singapore

• Language: Python

• Single split

• Homogeneous difficulty level

• Use case: evaluating LLMs when
little contextual information is
available

3. Experiments

We established baseline performance using pretrained LLMs and fine-tuned them on
pairs of <buggy, correct> student submissions. This process utilized data from the first
semester of the FalconCode dataset, with pairs generated by an Automated Repair
Tool. Our study includes models from the CodeGen family with 350M and 2B parame-
ters, as well as models from the StarCoder family with 164M, 1B, and 3B parameters.

Template for training/prompting our Code Language Models

Repair the incorrect program.
<PROBLEM DESCRIPTION>

Incorrect program:
<BUGGY PROGRAM>

Repaired code:
<CORRECTED PROGRAM> X

4. Results

We report the performance of the supervised baselines on the incorrect submission of
the last semester of the FalconCode dataset, split into two levels of difficulty. We also
report the performance of the same supervised models on the Singapore dataset.

Table 1: Pass@k for k = 1, 5, 10

falconcode_easy falconcode_hard singapore

model size k = 1 k = 5 k = 10 k = 1 k = 5 k = 10 k = 1 k = 5 k = 10

starcoder 164M 6.88 12.46 14.68 20.27 35.93 41.85 2.54 7.62 10.46

codegen 350M 12.08 23.19 27.88 13.68 28.28 33.77 3.72 12.92 18.90

starcoder 1B 16.91 30.38 36.06 26.44 44.94 50.72 7.35 21.02 28.77

codegen 2B 16.10 25.99 30.67 13.85 25.92 30.38 11.24 24.97 31.63

starcoder 3B 19.11 31.68 37.73 14.63 29.88 36.51 12.29 29.37 36.14

Table 2: Rouge@k for k = 1, 5, 10

model size k = 1 k = 5 k = 10 k = 1 k = 5 k = 10 k = 1 k = 5 k = 10

starcoder 164M 5.91 10.66 12.57 12.14 23.43 28.32 2.18 6.58 9.07

codegen 350M 10.56 20.14 24.12 9.06 19.32 23.50 2.49 8.66 12.92

starcoder 1B 14.32 25.41 29.93 17.02 30.91 35.90 5.60 15.95 21.68

codegen 2B 13.70 21.91 25.66 10.22 19.14 22.70 7.63 13.59 15.91

starcoder 3B 15.89 26.18 31.12 10.48 21.59 26.54 7.85 19.97 25.73

Observations

Model performance scales with training compute and model sizes. In the same
family, performance scales with model sizes and generations. However, across
families, smaller LLMs can outperform larger ones.

Fine-tuned language models can overfit their datasets. Small CodeGen models
perform better at fixing the ’hard’ problems of FalconCode compared to the easy
ones, primarily due to overfitting on the training set.

Supervised training can transfer across datasets. Models fine-tuned on the
FalconCode dataset can also correct incorrect programs in another dataset,
which features distinct problem types and other unique issues.

5. Discussion

Overarching goals. By providing a benchmark for this task, we hope to facilitate future
research by allowing easy replication of results.

Future work:

• Transitioning toward a multilingual evaluation benchmark.

• Conducting large-scale evaluations of instruction-tuned and chat models.

• Establishing an online leaderboard.

• Investigating the relationship between program repair quality and feedback quality.

Interested in collaborating? Reach out to us at charles.koutcheme@aalto.fi.

