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Abstract

The increasing trend of young children consuming online media underscores the
need for data-driven tools that empower educators to identify suitable educational
content for early learners. This paper introduces a method for identifying edu-
cational content within online videos. We focus on two widely used educational
content classes: literacy and math. We consider two levels: Prekindergarten and
Kindergarten. For each class and level, we choose prominent codes (sub-classes)
based on the Common Core Standards. For example, literacy codes include ‘letter
names’, and ‘letter sounds’, and math codes include ‘counting’, and ‘sorting’. We
pose this as a fine-grained multilabel classification problem as videos can contain
multiple types of educational content and the content classes can get visually simi-
lar (e.g., ‘letter names’ vs. ‘letter sounds’). As the alignment between visual and
audio cues is crucial for effective comprehension, we consider a multimodal video
analysis framework to capture both visual and audio cues in videos while detecting
the educational content. We leverage the recent success of the generative mod-
els to analyze audio and visual content. Specifically, we apply automatic speech
recognition (ASR) to extract the speech from the audio and capture visual cues
with descriptive captions. Finally, we fuse both cues to detect desired educational
content. Our experiments show multimodal analysis of cues is crucial for detecting
educational content in videos.

1 Introduction

°8 o

analyze compare building drawing
shape shapes

|[FeeeRT
@ 2O N :

addition subtraction counting
(a) Framesfrom literacy videos (b)  Framesfrom math videos (c) Frames from background videos

letter names letter sounds

Figure 1: Sample video frames from the dataset|Gupta et al.| [2023]]. We present the videos belonging
to the (a) literacy classes, (b) math classes, and (c) background. Background videos do not contain
educational content but share visual similarities with educational videos. The videos are labeled with
sub-classes, e.g., letter names vs letter sounds.

As internet access continues to spread, and smart devices become ever-present, children are devoting
more of their time to viewing online videos. A recent survey conducted on a national scale revealed
that 89% of parents with children aged 11 or younger confirmed that their kids watch videos on
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YouTube |Auxier et al.| [2020b]]. Moreover, it is estimated that young children in the age range of
two to four years consume 2.5 hours and five to eight years consume 3.0 hours per day on average
Rideout and Robb|[2019albf|. Childhood is typically a key period for education, especially for learning
basic skills such as literacy and math |Hemphill and Tivnan| [2008]], Jordan et al. [2009]. Unlike
generic online videos, watching appropriate educational videos supports healthy child development
and learning [Hurwitz|[2019], Hurwitz and Schmitt|[2020], Burkhardt and Lenhard| [2022]. Hence,
examining the content within these videos could offer valuable insights for parents, educators, and
media creators aiming to enhance young children’s access to high-quality educational videos, a
factor that has been demonstrated to yield significant learning benefits [Hurwitz| [2019]. With the
exponential growth of online content creation, automated methods for comprehending content become
increasingly indispensable in achieving this objective.

In this study, our objective is to assess whether a given video includes educational material and
to describe the nature of this content. We follow the Common Core Standards |Association et al.
[2010], [Porter et al.|[2011]] to characterize age-appropriate educational content for young kids.
Detecting educational content requires identifying multiple distinct types of content in a video
while distinguishing between similar content types. The task is challenging as the education codes
by Common Core Standards |Association et al.| [2010], [Porter et al.| [2011] can be similar such
as ‘letter names’ and ‘letter sounds’, where the former focuses on the name of the letter and the
latter is based on the phonetic sound of the letter. Also, understanding education content requires
analyzing both visual and audio cues simultaneously as both signals are to be present to ensure
effective learning |Association et al.[[2010], |Porter et al.|[2011]]. This is in contrast to standard video
classification benchmarks such as the sports or generic YouTube videos in UCF101 Soomro et al.
[2012] Kinetics400 [Smaira et al.|[2020]], YouTube-8M |/Abu-El-Haija et al.| [2016], where visual
cues are often sufficient to detect the different classes. Finally, unlike standard well-known action
videos, education codes are more structured and not accessible to common users. Thus, it requires
a carefully curated set of videos and expert annotations to create a dataset to enable a data-driven
approach. In this work, we focus on two widely used educational content classes: literacy and math.
For each class, we choose prominent codes (sub-classes) based on the Common Core Standards that
outline age-appropriate learning standards |Association et al.|[2010], Porter et al.|[2011]]. For example,
literacy codes include ‘letter names’, ‘letter sounds’, ‘thyming’, and math codes include ‘counting’,
‘addition subtraction’, ‘sorting’, ‘analyze shapes’. We present sample video frames corresponding to
these codes in figure[T}

We formulate the problem as a multilabel video classification task as a video may contain multiple
types of content that can be similar. We consider a multimodal content understanding framework to
combine visual and audio cues from a video. Combining multimodal cues is crucial for detecting
educational content because aligned visuals and audio are essential to effective literacy instruction.
Furthermore, using multimodal cues improves the robustness of the model as individual modalities
can be noisy or not sufficiently informative. The multimodal approach is shown to be effective
for image-text matching and content understanding [Datta et al.|[2019]. We first extract visual and
audio information from a given video, then develop separate machine learning models to classify
videos based on each modality, and finally combine the modality-specific predictions to detect the
educational codes in the video.

2 Related Works

Educational videos for early development. Providing young children (ages 0-8) with access
to high-quality screen media represents a convenient means of promoting early math and literacy
skills, particularly given that these children typically spend around 2.5 hours per day engaged with
screen media Rideout and Robb| [2019al], |Auxier et al.|[2020a]]. Exposure to well-crafted educational
media has been shown to yield positive outcomes in early learning. Controlled laboratory studies
have demonstrated that young children can transfer the knowledge acquired from educational math
videos to non-screen-based learning scenarios|Aladé et al.|[2016], Schroeder and Kirkorian| [2016]],
Hurwitz [2019]], Burkhardt and Lenhard|[2022]]. Moreover, in more naturalistic trials conducted in
home settings over several weeks, these positive effects have proven to be enduring, even in less
controlled environments |Silander et al.|[2016]. Furthermore, the benefits appear to persist over time,
as evidenced by two longitudinal studies indicating that children who viewed educational programs
during their preschool years exhibited stronger math performance, including self-reported grade point



averages, course completion rates, and standardized test scores, lasting into adolescence |Anderson
et al.|[2001]], [Wright et al.| [2001].

Multimodal Learning. Supervised multimodal Learning typically relies on learning a common
embedding based on the crowd-captioned datasets such as Flickr30k [Young et al.|[2014] and MS-
COCO Captions |Chen et al.| [2015]. Some prior works such as OSCAR [Li et al.| [2020] and
VinVL |[Zhang et al.|[2021]] have utilized pre-trained object detectors and multi-modal transformers
to learn image captioning using supervised aligned datasets. BLIP |Li et al.| [2022] takes a hybrid
approach where it bootstraps an image captioner using a labeled dataset and uses it to generate
captions for web images. This generated corpus is then filtered and used for learning an aligned
representation. ALign BEfore Fuse |Li et al.|[2021]] highlights the importance of aligning text and
image tokens before fusing them using a multi-modal transformer.

Weakly aligned text-image/video datasets scraped from the web such as Conceptual Captions|Sharma
et al.| [2018]] and WebVid-10M Bain et al.|[2021]] enable learning of multi-modal representations.
CLIP |Radford et al.| [2021]] applies a cross-modal contrastive loss to train individual text and image
encoders. Everything at Once [Shvetsova et al.| [2022] is able to additionally utilize the audio
modality and incorporates a pairwise fusion encoder which encodes pairs of modalities, as a result,
6 forward passes of the fusion model are required for 3 modalities. Frozen in Time [Bain et al.
[2021] is able to utilize both image-text and video-text datasets through the use of a Space-Time
Transformer Visual Encoder. Visual Conditioned GPT|Luo et al.[[2022] uses a single cross-attention
fusion layer to combine pre-trained CLIP text and visual features. Flamingo |Alayrac et al.[[2022]
adds cross-attention layers interleaved with language decoder layers to fuse visual information
into text generation. MERLOT [Zellers et al.|[2021] 2022]] and Triple Contrastive Learning [Yang
et al.| [2022] combine contrastive learning and generative language modeling to learn aligned text-
image representations. (Gupta et al.|[2023]] consider a class-prototypes based contrastive learning for
classifying videos with multiple educational labels. Zhao et al.[[2017] also consider multimodal cues
to analyse online tutorial videos.

3 Proposed Approach

We pose the problem of detecting educational content in videos a multilabel video classification task.
To address this, a multimodal content understanding framework is employed, which integrates both
visual and audio information from the video. This combination of multimodal cues is particularly
important for identifying educational content, as synchronized visuals and audio are crucial for
effective literacy instruction. We present the framework in figure 2} The framework consists of two
components: one for processing visual cues and another for processing audio cues. These components
are described below.
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Figure 2: Proposed multimodal framework consists of two components. Top: processing visual cues,
bottom: processing audio cues. Both the cues are fused to make final predictions.

Processing visual cues. For capturing the visual cues, we select key frames from a video and generate
a detailed caption describing the visual content for the frames. A caption corresponding to a frame



describes the primary activity, objects, attributes of the objects (such as color, shape, count), and

interactions between the objects (such as a cartoon character pointing to a letter). We combine the

captions for the frames to generate a detailed description of the video. We use the BLIP-2
model for generating captions. This is a generative multimodal model that combines

images and texts. A frozen vision transformer Dosovitskiy et al|[2021] is employed to capture the

visual content and a frozen large language model (LLM) is employed to capture text queries. A
lightweight query transformer is trained to connect two modalities by learning to attend text-informed

visual features in order to generate appropriate responses. The model is trained on a large-scale

data set of 234 million image and caption pairs, achieving state-of-the-art performance in generating

descriptive captions for novel images such as frames from YouTube videos. We present examples of
generated captions in figure[3] Note that the captions capture the objects (such as cap and car), identify

the object type (such as a character C), the style of the image (such as cartoon), and actions (such as

driving). We concatenate the captions from the frames to generate a detailed textual description of
the video. Similar consecutive captions are removed to avoid including redundant captions. Finally,
we apply a multiclass text transformer model |[Vaswani et al.|[2017] to detect the educational codes in

the video.

C is for cap.

Caption: a cartoon image of a Caption: a cartoon wagon with ~ Caption: a cartoon monkey in
hat with the letter C on it many different characters on it  uniform driving a car

Figure 3: Examples of captions for video frames generated by BLIP-2Li et al|[2023].

Processing audio cues. To process the audio cues we first extract the audio from the video. As online
videos often include a background track, we extract the voice from the audio to avoid including
spurious audio signals [Hennequin et al)| [2020]]. For the voice track, we apply automatic speech
recognition (ASR) to generate text from the audio. We use Whisper [Radford et al.|[2023] for ASR.
Whisper is an encoder-decoder based transformer model that is trained for multiple tasks including
ASR and translation. Finally, we apply a multiclass transformer [Vaswani et al.| [2017]] to detect the
educational codes in the transcription text. The transformer model classifies videos based on the
occurrence of words and the relationships between words, such as the order in which they appear.
For example, in videos classified as containing letter names, the letters tend to appear in alphabetical
order.

Fusion of visual and audio cues. The video-based model and audio-based model are trained
separately, and the predictions are combined to generate the final predictions in a late-fusion manner.
For each video, we have two scores for the content categories: one indicating the likelihood the video
belongs to the categories based on the visual content, and the other based on the audio content. We
use a weighted sum of the classifications from the video-based and audio-based models to determine
the final class predictions as

pe = ap? + (1 —a)pl (N

where p! and pf are the prediction scores for a video corresponding to a category class ¢ from the
video-based and audio-based models, respectively. o € [0, 1] is used to control the contribution of
the models to determine the final prediction score p.. We experimentally determine o = 0.5, i.e.,
equally weighting both modalities, results in the best performance.

4 Experiments

Datasets. We perform our experiments on a dataset of Youtube videos. The dataset consists of more
than 200 hours of expert-annotated videos with literacy and math classes suitable for kindergarten(K)



Literacy classes  Audio only Video only Multimodal

Follow words 69 67 86
Sight words 74 72 75
Letter sounds 66 52 64
Sounds in words 72 65 74
Letter names 82 78 83
Letter in words 53 49 61
Rhyming 98 85 98
Average 74 67 77

Table 1: Accuracy(%) on literacy classes at the pre-Kindergarten level.

Literacy classes  Audio only Video only Multimodal

Follow words 73 79 76
Sight words 57 63 64
Letter sounds 76 67 79
Sounds in words 76 62 73
Letter names 83 76 81
Letter in words 55 55 59
Rhyming 98 96 100
Average 74 71 76

Table 2: Accuracy(%) on literacy classes at the Kindergarten level.

and pre-kindergarten(pre-K) levels. These videos are selected from Youtube and annotated by expert
education researchers. To ensure reliability, we train the annotators before labeling the videos and
check inter-annotator agreement (more than 95% agreement) for selecting the final set of videos.

For literacy, both pre-kindergarten and kindergarten levels have the same set of seven classes. The
classes and the number of videos per class are as follows: Follow words(175 for pre-K and 204 for
K), Sight words(441 for pre-K and 228 for K), Letter sounds(223 for pre-K and 297 for K), Sounds in
words(259 for pre-K and 282 for K), Letter names(341 for pre-K and 341 for K), Letter in words(161
for pre-K and 161 for K), and Rhyming(89 for pre-K and 89 for K). The math pre-kindergarten classes
and the number of videos per class are as follows: Counting(318), Written numerals(343), Addition
and Subtraction(79), Building and drawing shapes(30), Shape identification(185), Subitizing(304),
Patterns(615), Cardinality(168), Analyzing and comparing shapes(90), Comparing groups(79), Mea-
surable attributes(203), Sorting(80), and Spatial language(346). The math kindergarten classes and
the number of videos per class are as follows: Counting(318), Written numerals(347), Addition and
Subtraction(79), Building and drawing shapes(81), Shape identification(190), Cardinality(168), Ana-
lyzing and comparing shapes(90), Comparing groups(79), Measurable attributes(203), Sorting(80),
Spatial language(346).

Experimental setup. We consider 75% of the videos for each class for training and 25% for tests.
We consider three random splits of data for experiments and results are presented as the average of
these three setups. As our goal is to detect educational videos for children, we consider precision as
the metric to focus on only reliable predictions.

Results. Results for both pre-K and K levels for literacy classes are shown in table|l|and table
respectively. Results for both pre-K and K levels for math classes are shown in table[3|and table 4]
respectively. We compare our results with the baselines where only one modality is considered, i.e.,
either audio or video cues. Note that the multimodal variant achieves better performance overall. Due
to the variations in the number of videos per code and inter-code similarities, we notice a variation in
accuracy numbers among the codes. Furthermore, the effectiveness of multimodal cues varies across
the codes due to the relative importance of visual and audio cues in expressing the code.



Math classes Audio only Video only Multimodal

Counting 86 67 84

Written numerals 80 70 81
Addition and Subtraction 98 73 98
Building and drawing shapes 89 71 83
Shape identification 89 62 87
Subitizing 73 60 77

Patterns 93 89 93
Cardinality 66 56 73
Analyzing and comparing shapes 89 51 89
Comparing groups 95 51 89
Measurable attributes 88 61 90
Sorting 87 60 90

Spatial language 79 67 78
Average 85 64 86

Table 3: Accuracy(%) on math classes at the pre-Kindergarten levels.

Math classes Audio only Video only Multimodal
Counting 83 69 83
Written numerals 79 72 81
Addition and Subtraction 98 84 98
Building and drawing shapes 77 56 87
Shape identification 88 71 89
Cardinality 66 54 70
Analyzing and comparing shapes 89 63 &9
Comparing groups 97 72 97
Measurable attributes 91 57 91
Sorting 95 69 93
Spatial language 79 64 79
Average 86 66 87

Table 4: Accuracy(%) on math classes at the Kindergarten levels.

5 Conclusion

We have proposed an approach for detecting educational content in online videos. The problem
is formulated as a multilabel video classification task and we have considered a multimodal video
analysis framework to address this. Our framework consists of two components: one for processing
visual cues and another for processing audio cues. We fuse the predictions from two components to
generate final predictions. We evaluate our approach on a large-scale expert-annotated educational
video dataset. Our experiments indicate that multimodal analysis is important to detect educational
content in videos and this outperforms the baselines where only a single modality is considered.
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