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Figure 2: Comparing repair accuracy of GPT-3.5T and 
GPT-4 after k interactive iterations
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Figure 1: Proposed architecture. LLM generates a repair and feedback 
which is validated by an evaluation oracle against testcases.

To assess the reliability, we manually categorized GPT generated feedback into 
following 5 categories:

GPT 4

Precision Recall
CoverageReliability

GPT 3.5T 51.2% 52.7%

84.0%72.0%

False Positives
Hallucination

18.0%

4.1%

15.0%

9.0%

Invalid

Table 1: Feedback quality of GPT-3.5T and GPT-4 LLMs, based on manual assessment by authors. 
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Category Definition
True Positive Valid feedback is generated
False Negative Failed to detect the error and generate feedback
False Positive (Extra) Unnecessary feedback, e.g., Optimization
False Positive (Invalid) Incorrect feedback generated
False Positive (Hallucination) Fabricated feedback (unrelated to the code) is 

generated.


