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Abstract

We study the problem of zero-shot multilingual exercise retrieval in the context
of online language learning, to give students the ability to explicitly request per-
sonalized exercises via natural language. Using real-world data collected from
language learners, we observe that vector similarity approaches poorly capture the
relationship between exercise content and the language users use to express what
they want to learn. This semantic gap between queries and content dramatically
reduces the effectiveness of general-purpose retrieval models pretrained on large-
scale information retrieval datasets. We leverage the generative capabilities of large
language models to bridge the gap by synthesizing hypothetical exercises based on
the user’s input, which are then used to search for relevant exercises. Our approach,
which we call mHyER, outperforms several strong baselines, such as Contriever,
on a novel benchmark created from publicly available Tatoeba data.

1 Introduction

Modern personalized education systems typically leverage the power of machine learning models
to estimate user skill levels[1–7] and adaptively serve exercises to students [8–10]. Adaptivity,
while a critical part of any personalized education system, is a passive form of personalization
from the student’s point of view: While exercises are tailored to an estimate of the student’s skill
level, this customization occurs behind the scenes, with no opportunity for students to specify
particular characteristics of exercises. In this paper, we study a complementary form of user initiated
personalization in the context of online language learning. In particular, students (referred to as
“users”) are given the ability to explicitly request learning content from a personalized education
system, which returns relevant exercises from a fixed catalog for the user to do.

Online language learning is a natural setting for user initiated personalization, as people learn
languages for very personal reasons: Some learn for fun, while others have specific goals, such as
preparing for an international trip or developing language skills for business. Different reasons for
learning lead to different needs for exercise content: Someone learning to write in a business setting
may want extra practice with grammar or politeness, whereas the user learning for a vacation may
want exercises about hotels or transportation. With the goal of allowing language learners to tailor an
online learning experience to their own needs, we formalize the task of exercise retrieval for user
directed language learning and evaluate machine learning models for this task. The goal of this task
(Figure 1) is to retrieve relevant exercises from a set of existing exercises based on a user’s input. In
this setting, collecting relevance labels (i.e., pairs of user inputs and relevant exercises) is particularly
challenging, as users will typically be presented with only a small number of exercises for any given
input. As a result, we consider the zero-shot setting, where we do not have access to relevance labels
for training. Concretely, we make the following contributions:
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Figure 1: Exercise retrieval for user directed language learning and our proposed solution, multilingual
Hypothetical Exercise Retrieval (mHyER). At a high level, users are allowed to provide any natural
language input, and the goal is to retrieve exercises relevant to that input. Our method utilizes large
language models to perform zero-shot exercise retrieval.

• We present our zero-shot retrieval approach, mHyER, in Section 2. We highlight a core challenge
of this task and show that mHyER overcomes the pitfalls of direct vector similarity search.

• With no existing benchmarks for this task, we create the first benchmark in exercise retrieval with
publicly available Tatoeba data and evaluate our method against several strong dense retrieval
baselines in Section 3. Empirically, mHyER outperforms relevant baselines by a significant margin.

Related work. Exercise retrieval is naturally connected to the broad field of information retrieval,
and in particular, dense retrieval [11, 12]. Dense retrieval focuses on retrieving documents based on
similarity measured in a learned representation space. Zero-shot retrieval, or retrieval without training
on task-specific relevance information, is of particular relevance to our task. Such methods typically
rely on a supervised pretraining stage [13–15], where models are trained on large scale retrieval
datasets, such as MS MARCO [16]. However, such supervised pretraining ultimately depends on
the existence of suitable labeled datasets, which are not always readily available [17]. The rise of
large language models (LLMs) with strong zero/few-shot performance in new domains has resulted
in a line of research integrating LLMs into the retrieval pipeline. Such approaches typically rely on
some combination of specialized prompting and synthesizing retrieval datasets to retrain retrieval
models [18–21]. Our approach takes particular inspiration from HyDE [22], which utilizes a LLM to
synthesize a hypothetical document, which is used then used with a pretrained encoder to retrieve
documents via nearest neighbors. A fundamental step in any retrieval method is the representation
space used for similarity comparisons. For the task of exercise retrieval, we focus on learning sentence
embeddings, where pretrained language models such as BERT [23] or RoBERTa [24] serve as strong
foundations. Contrastively learning sentence representations [17, 25–28] has become especially
popular due to its simplicity and strong empirical performance. Of particular interest to the language
learning setting is multilingual contrastive learning [29].

2 Problem setup and method

2.1 Exercise retrieval for user directed language learning

The goal of exercise retrieval for user directed language learning is to retrieve relevant exercises for a
user given a text input from the user describing what they want to learn. In particular, we assume
that user is taking a language learning course, which consists of two languages: the “first language”
(i.e., a language they already know—not necessarily the user’s native language) and the “second
language” (i.e., the language they are learning), which we refer to as L1 and L2, respectively. The
user completes exercises, which are drawn from a fixed set of N exercises E = {e1, . . . , eN} that are
at an appropriate level for the user. We can view this set of N exercises as samples from an unknown
exercise distribution, which captures characteristics (style, length, content, etc) of exercises. Each
exercise consists of two sentences e(L1)i and e

(L2)
i . The user does the exercise by translating e

(L1)
i to

the L2, with e
(L2)
i used as an example of a correct translation. The user provides some input t, and

our objective is to retrieve the K (unique) exercises that are the most relevant based on input t in a
zero-shot manner. That is, without using any labeled relevance data for training, we want to retrieve
K unique exercises e⋆1, . . . , e

⋆
K that maximize the relevance distribution conditioned on user input t:

e⋆1, . . . , e
⋆
K = argmax

e1,...eK∈E
ei ̸=ej ∀i,j

K∏
i=1

p(ei|T = t). (1)
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Figure 2: mHyER consists of two stages. Contrastive finetuning (left) is employed as a training stage
to optimize our semantic similarity space for multilingual exercises. Then at retrieval time (right), a
large language model is employed to synthesize hypothetical retrieval candidates. These retrieval
candidates are then used in direct similarity search to retrieve exercises.

User inputs. The core of the personalized experience in this problem setting is allowing users to
provide an input describing what they want to learn with no restrictions on input content, resulting in
large number of potential input types. For example:

• Topics: Users request that the content of exercises matches a particular topic. Inputs such as
“words about animals” or “countries” are such examples.

• Grammar: Because learning grammatical structure is a large component of language learning,
grammar-focused inputs, such as “non-present tenses”, are another common input type.

• Culture: Users can request to review culture-specific aspects of language, such as idioms, slang,
or region-specific quirks. For example, a user learning Spanish may want to learn about “voseo”, a
region-specific grammatical concept in South America.

• Learning process: Users have requests that refer to elements of the process of learning a language,
such as words that are hard to spell or pronounce.

As we discuss in Section 2.3, user inputs of these types result in a fundamental distributional gap
between how users express their learning objectives and the content of the exercises.

2.2 Method

Baseline: direct search with similarity spaces. For text-based retrieval, most existing methods
consist of a model fθ (parametrized by θ) that maps natural language inputs (from the space of all
text inputs T ) to some d-dimensional vector space: fθ : T → Rd. Such models, also referred to as
encoders, are typically neural networks trained such that texts with similar content are more similar in
the representation space under some measure, like cosine similarity. That is, if t1, t2 ∈ T are similar
in content, then sim(fθ(t1), fθ(t2)) is large (and positive). This similarity space suggests a natural
approach for retrieving exercises: Pass each exercise ei through the model fθ to obtain fθ(ei).2 Then,
when a user provides an input t, pass t through the model to obtain fθ(t) and return the K exercises
with largest cosine similarity sim(fθ(ei), fθ(t)). As we see in Section 2.3, direct similarity search
often retrieves sentences featuring “language about language”, which are often irrelevant to the user’s
input. This leads us to leverage the generative abilities of LLMs, as we discuss next.

mHyER. We propose mHyER, which after a multilingual contrastive training stage, retrieves
exercises in a two-step manner. First, we sample a set of Nc hypothetical exercises from the exercise
distribution conditioned on the user input. We call these sampled exercises our retrieval candidates.
In principle, we do not have access to this exact distribution, but we can efficiently approximate
sampling via LLM. Second, we use the retrieval candidates to perform similarity search via K-nearest
neighbors. mHyER is inspired by two complementary methods: the multilingual contrastive learning
approach of [29], and the HyDE retrieval method of [22], which uses synthesized retrieval candidates.
We now discuss both the training and retrieval stages in greater detail.

2We slightly abuse notation here and write fθ(ei) to mean either fθ(e
(L1)
i ) or fθ(e

(L2)
i ). The choice to

compare against the representation of the L1 or L2 sentence is explored in Section 3.
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Figure 3: TSNE visualization of exercise, user input, and GPT-4-synthesized retrieval candidate
representations in the representation space of a trained BERT sentence encoder (left). User inputs
concentrate in the language about language region (top right), making direct similarity search sub-
optimal. Retrieval candidates bridge the distribution gap between user inputs and exercise text and
are close in similarity to exercises that meet the user’s specifications (bottom right).

Stage 1: Learning a multilingual similarity space. While we operate in a setting where no explicit
user relevance data is provided, the exercise sentence pairs (e(L1)i , e

(L2)
i ) can be utilized to improve

the similarity space. Naturally, we want the L1 and L2 sentences to be considered similar in the
representation space. As a result, we take inspiration from [29] and utilize multilingual contrastive
learning, an unsupervised approach that aims to learn a representation where similar items (called
positive pairs) are closer together and dissimilar items (called negative pairs) are far apart. For
exercise ei, the contrastive loss Li with a mini-batch of NB sentence pairs is

Li = − log
exp

(
sim

(
fθ(e

(L1)
i ), fθ(e

(L2)
i )

)
/τ

)
∑NB

j=1 exp
(

sim
(
fθ(e

(L1)
i ), fθ(e

(L2)
j )

)
/τ

) , (2)

where τ is the user-set temperature parameter and sim (·, ·) is the cosine similarity. In this work,
rather than train a sentence encoder from scratch, we follow the commonly accepted practice of
initializing our encoder with existing BERT sentence encoder checkpoints, and employing contrastive
learning to finetune these checkpoints on exercise data.

Stage 2: Sampling retrieval candidates and exercise retrieval. A core component of mHyER is
sampling from the exercise distribution conditioned on the user input. While we cannot sample directly
from this distribution, we can approximate sampling with a LLM. In particular, we prompt the LLM
with a fixed description of the exercise distribution and instruct the LLM to synthesize hypothetical
exercises based on this description and based on a user’s input. Crucially, we can synthesize exercises
without requiring any labeled examples. To retrieve exercises, the LLM synthesizes Kh hypothetical
exercises, which we denote ẽ1, . . . , ẽKh

. We then encode these hypothetical exercises via fθ to obtain
Kh vectors fθ(ẽ1), . . . , fθ(ẽKh

). To retrieve exercises, we retrieve the K exercises that have the
highest similarity score compared to the average of the Kh vectors: 1

Kh

∑Kh

i=1 fθ(ẽi). We use GPT-4
in this work, but in practice, any LLM of sufficient capacity can be used.

2.3 Bridging a fundamental distribution gap with mHyER

In an effort to better understand the task of retrieving exercises from user inputs, we crowdsourced
a small dataset of user inputs from Duolingo users. We then contrastively finetune mBERT with
roughly 40,000 real exercises from Duolingo, spanning 3 different language pairs. To get a sense
of how contrastively learned similarity spaces reflect user inputs and exercise text, we visualize our
collected data, along with a subsample of the exercises, via TSNE in Figure 3. This visualization
reveals a fundamental distribution gap between user inputs and exercise text: How users describe
what they want to learn occupies a distinct part of the representation space explicitly using words
or phrases about language (e.g., “verbs”, “past tense”, “spelling”). We refer to this region as the
“language about language” region. As a result, direct similarity search yields exercises that similarly
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Table 1: Evaluation results on the Tatoeba Tags dataset. mHyER[model] indicates that contrastive
finetuning was employed with [model] as the initial checkpoint. +[dataset] denotes that [dataset]
data was used for contrastive finetuning. In all cases, mHyER outperforms relevant baselines
dramatically, with large gains coming from finetuning on out-of-distribution data (Duo-OOD).

English English (L2) from Spanish (L1) Spanish (L2) from English (L1)

AUC P@15 AUC
L1

AUC
L2

P@15
L1

P@15
L2

AUC
L1

AUC
L2

P@15
L1

P@15
L2

U
ns

up
.

pr
et

ra
in

in
g

BERT 0.495 0.032 0.481 0.428 0.019 0.020 0.492 0.505 0.044 0.020
mBERT 0.468 0.037 0.446 0.487 0.038 0.040 0.469 0.442 0.039 0.019
Contriever 0.536 0.161 0.542 0.523 0.112 0.073 0.529 0.549 0.165 0.087
mContriever 0.571 0.064 0.438 0.503 0.051 0.063 0.559 0.564 0.061 0.027
SimCSE 0.646 0.115 0.535 0.559 0.069 0.054 0.635 0.610 0.127 0.068
mHyERmBERT+en-from-es 0.722 0.225 0.686 0.701 0.227 0.208 0.710 0.696 0.243 0.242
mHyERmBERT+es-from-en 0.717 0.223 0.697 0.693 0.219 0.211 0.702 0.706 0.237 0.244
mHyERmBERT+Duo-OOD 0.752 0.211 0.734 0.738 0.215 0.206 0.739 0.757 0.225 0.242
mHyERContriever+Duo-OOD 0.768 0.239 0.644 0.780 0.106 0.232 0.749 0.659 0.265 0.099
mHyERmContriever+Duo-OOD 0.729 0.258 0.748 0.723 0.267 0.264 0.713 0.744 0.271 0.294

Su
p.

pr
et

ra
in

in
g Contriever 0.541 0.164 0.491 0.492 0.120 0.086 0.530 0.492 0.180 0.105

mContriever 0.575 0.104 0.548 0.510 0.126 0.108 0.560 0.581 0.112 0.101
mHyERContriever+Duo-OOD 0.775 0.246 0.668 0.797 0.102 0.240 0.760 0.692 0.268 0.108
mHyERmContriever +Duo-OOD 0.738 0.255 0.761 0.734 0.260 0.264 0.722 0.752 0.255 0.280

contain words explicitly about language. As shown in Figure 3, the input “past tense verbs” is most
similar to exercises about language (e.g., “I explained the new words to him”). Figure 3 also highlights
how synthesizing retrieval candidates helps bridge this distributional gap by “translating” the user’s
input (which is typically expressed in “language about language”) to a hypothetical in-distribution
exercise whose content satisfies the user input.

3 Datasets and experimental results

3.1 Tatoeba Tags dataset: Data and evaluation metrics.

Data. We construct a retrieval dataset from Tatoeba, a public database of sentences and translations
that are tagged with grammatical concepts, language specific concepts, or topics. For example, the
sentence “The brown bear is an omnivore” is tagged with “animals” and the sentence “That way I
kill two birds with one stone” is tagged with “idiomatic expression”. We treat each tag as a user
input, and deem an exercise relevant if it has been tagged accordingly. We form 3 benchmarks
for evaluation, collectively referred to as the Tatoeba Tags dataset: The English benchmark (139
tags and 89,392 English-only sentences), the Spanish from English benchmark (114 tags in Spanish
and 49,258 Spanish-English sentence pairs), and the English from Spanish benchmark (108 tags in
English and 46,837 English-Spanish sentence pairs). The Spanish from English and English from
Spanish benchmark differ in sentences and number of tags due to considerations specific to learning
direction; see Appendix A for details as well as the dataset curation process.

Metrics. We utilize Precision@K, which is a common metric in information retrieval that reports
the fraction of the K retrieved exercises that are relevant. To compute Precision@K, we retrieve
K sentences per user input (i.e., tag) and record the fraction of the K retrieved sentences tagged
with the user input tag. Because the tagging of Tatoeba sentences is not exhaustive, the absolute
values of reported Precision@K may be low, but relative performance still indicates how methods
would perform if tagging was comprehensive. In light of this, we also view the problem as a more
general problem of binary classification, where the goal is to predict whether an exercise is relevant
or irrelevant, and report area under the ROC curve (AUC).

3.2 Experimental results

We evaluate mHyER against BERT and mBERT [23], as well as the following BERT-based models:
Contriever, mContriever [17], and SimCSE [25]. In particular, we use the BERT base (110 million
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Table 2: Ablation results on the Tatoeba Tags dataset. We experiment by removing either the
contrastive finetuning stage or the retrieval candidate synthesis stage. +GPT indicates that retrieval
candidates were used with no contrastive finetuning, whereas +Duo-OOD indicates that direct similarity
search was performed after contrastively finetuning on Duo-OOD. In a vast majority of cases, both
stages boost performance, with retrieval candidates generally contributing more in performance gains.

English English (L2) from Spanish (L1) Spanish (L2) from English (L1)

AUC P@15 AUC
L1

AUC
L2

P@15
L1

P@15
L2

AUC
L1

AUC
L2

P@15
L1

P@15
L2

U
ns

up
.

pr
et

ra
in

in
g mContriever 0.571 0.064 0.438 0.503 0.051 0.063 0.559 0.564 0.061 0.027

mContriever +GPT 0.676 0.237 0.613 0.663 0.213 0.213 0.643 0.602 0.245 0.217
mContriever +Duo-OOD 0.665 0.096 0.670 0.665 0.119 0.106 0.656 0.657 0.090 0.077
mHyERmContriever+Duo-OOD 0.729 0.258 0.748 0.723 0.267 0.264 0.713 0.744 0.271 0.294

Su
p.

pr
et

ra
in

in
g mContriever 0.575 0.104 0.548 0.510 0.126 0.108 0.560 0.581 0.112 0.101

mContriever +GPT 0.731 0.250 0.642 0.724 0.238 0.243 0.706 0.636 0.263 0.258
mContriever +Duo-OOD 0.672 0.106 0.678 0.677 0.128 0.120 0.662 0.661 0.113 0.091
mHyERmContriever+Duo-OOD 0.738 0.255 0.761 0.734 0.260 0.264 0.722 0.752 0.255 0.280

parameters) variant of each of the above methods. These methods achieve strong unsupervised
performance in a variety of information retrieval and semantic text similarity tasks. Above, mBERT
and mContriever were trained on multilingual data, while all other methods were trained on only
English text. For a complete description of the baselines, please see Appendix B. We also experiment
with supervised Contriever and mContriever, which are finetuned on MS MARCO [16]. We consider
two retrieval settings: Unsupervised pretraining, where we start with a BERT checkpoint that has
been pretrained in an unsupervised manner, and supervised pretraining, where we start with a BERT
checkpoint that has been pretrained on MS MARCO [16], a large scale retrieval dataset that covers
different tasks, such as passage ranking and keyphrase extraction. We emphasize that mHyER is
trained exclusively without labeled exercise relevance data. Within each setting, we can retrieve
exercises in two distinct ways: synthesizing retrieval candidates in the from language (L1) and doing
similarity search on the L1 exercise texts, or synthesizing retrieval candidates in the learning language
(L2) and performing similarity search on the L2 exercise texts. As a result, we report AUC and
precision@15 in both the L2 and L1 settings. See Appendix C for more experimental details.

The evaluation results are presented in Table 1. We contrastively finetuned mBERT on the Spanish
from English benchmark (denoted es-from-en) and the English from Spanish benchmark (denoted
en-from-es), as well as the 40,000 out-of-distribution Duolingo sentence pairs mentioned in Sec-
tion 2.3, which we refer to as Duo-OOD. In particular, we observe that finetuning on this dataset
outperforms finetuning on in-distribution data. This surprising observation leads us to finetune
Contriever and mContriever checkpoints with Duolingo data in both the unsupervised and supervised
settings. In the unsupervised setting, we once again observe poor performance from direct similarity
search baselines and sizable increases in performance when using mHyER: up to 39% increases in
AUC and more than doubling the performance of precision@15 for the best mHyER over the
best direct similarity approach. We observe similar gains in the supervised setting. Methods that
use Contriever (pretrained only on English data) typically perform better when retrieving in English,
whereas methods using mContriever typically perform better in multilingual settings.

Ablation study. The two key steps in mHyER are the multilingual contrastive pretraining stage
and synthesizing retrieval candidates to use for retrieval. To characterize the relative contributions
of each stage, we create variants of mHyER performing direct similarity search after contrastive
pretraining or retrieving with GPT-synthesized retrieval candidates with a non-finetuned encoder (i.e.,
HyDE [22]). As shown in Table 2, the combination of both stages yields the best performance in the
vast majority of cases. Utilizing only synthesized retrieval candidates results in the larger increases in
precision compared to contrastive finetuning, the opposite is true for AUC. This suggests that the
two steps drive performance increases in complementary ways: Contrastive finetuning changes the
similarity space such that relevant exercises are closer to user inputs at a global level, resulting in
increases in AUC (which measures a global ranking of predicitions). However, direct similarity search
still cannot overcome distributional gaps, and hence, increases in precision@15 are low relatively. On
the other hand, synthesizing GPT candidates directly improves retrieval quality, resulting in higher
retrieval quality, but does not change representations, resulting in relatively lower increases in AUC.
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A Dataset details

To form the benchmarks, we collect all tags corresponding to the benchmark, filter out tags and
sentences containing profanity, and then perform benchmark specific processing. We then keep only
the tags with more than 20 sentences and download the corresponding sentences. The benchmark
specific processing is done to better align the benchmark with how users would interact with real-
world language learning courses. For example, a user’s input will most likely be in the L1, meaning
the tags must be translated to the appropriate language. Not only does the language of the tags matter,
but the content of the tags as well. Some tags only make sense as user inputs for one course direction,
but not the other. For example, a Spanish speaker learning English would not input “voseo” (a Spanish
grammatical concept), nor would an English speaker learning Spanish input “British English”.

B Baseline details

BERT and mBERT were trained in a self-supervised manner by using masked language modeling
and next sentence prediction objectives, with the only difference being the training data (only
English for BERT and a multilingual corpus for mBERT). Contriever and mContriever propose two
new approaches in contrastively tuning BERT: (1) utilizing an inverse-cloze task and independent
cropping as means of forming positive pairs and (2) utilizing a Momentum encoder to ensure better
representation of negative items; please see [17] for specific details. Contriever is initialized with
BERT and trained on CCNet and Wikipedia data, whereas mContriever was initialized with mBERT
and trained on multiple languages in CCNet. We also consider supervised variants of Contriever
and mContriever, which are finetuned on the MS MARCO, a large scale retrieval dataset. SimCSE
considers dropout as a “minimal augmentation” and forms positive pairs in the contrastive loss by
passing the same sentence through the encoder with different random dropout parameters. Starting
with BERT, SimCSE is trained on Wikipedia data.

C Additional experiment details

For all experiments, we take the [CLS] representation as the sentence representation, except when
working with Contriever/mContriever, where we use their custom mean pooling; see https://
huggingface.co/facebook/contriever for further details. In all cases, we train mHyER using
the setup of [29] (adapted from [25]) for 1 epoch with step size 0.001 and temperature parameter
τ = 0.05.
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