
An Automated Graphing System for Mathematical
Pedagogy

Arya Bulusu
Merlyn Mind Inc.

arya.bulusu@merlyn.org

Brandon Man∗

Massachusetts Institute of Technology
bm557@mit.edu

Ashish Jagmohan
Merlyn Mind Inc.

ashish@merlyn.org

Aditya Vempaty
Merlyn Mind Inc.

aditya@merlyn.org

Jennifer Mari-Wyka
Merlyn Mind Inc.

jennifer@merlyn.org

Abstract

Teachers use a variety of in-classroom technological tools in day-to-day instruction.
The variety and complexity of operating these tools imposes a cognitive and
time-overload, that teachers would rather spend with students. Pedagogical tool
orchestration systems, based on generative AI, hold the promise of untethering
teachers by enabling simple language-based operation of tools. Graphs are an
essential tool in the classroom, allowing students to visualize and interact with
mathematical concepts. In this paper, we present an automated graphing system for
mathematical pedagogy. The system consists of an LLM and a mathematical solver
used in conjunction with a math graphing tool to produce accurate visualizations
from simple natural language commands. Our goal is to allow teachers to easily
invoke math graphing tools through natural language, which is not possible through
the use of a solver or an LLM alone. For benchmarking purposes, we create a
dataset of graphing problems based on Common Core standards. We also develop
an autoevaluator to easily evaluate the outputs of our system by comparing them to
ground-truth expressions. Our results demonstrate the potential of tool usage with
LLMs, as we show that incorporating a solver into the system results in significantly
improved performance.

1 Introduction

Generative AI has significant potential to simplify the tools available in the classroom, allowing
teachers to spend more time interacting with their students instead of their technology [2]. Our
approach to incorporating generative AI into classroom technologies concerns the combination of
large-language models (LLMs) and tool use. Recently, many frameworks have shown that connecting
LLMs with external tools leads to more accurate, consistent responses and allows them to perform
more difficult tasks [11], [10] [9], [13]. Through the use of tools, we can move towards an LLM
system with the simplicity and reliability necessary for classroom use.

Teachers have many technological tools available to them in the classroom, but the extensive variety
and complexity of these tools often makes it difficult to incorporate them into teaching. If tool-using is
easier for teachers, they are untethered from their tools and more able to teach. Automated tool-using
systems hold the promise of enabling language-controlled orchestration of pedagogical tools, reducing
the overhead on teachers. In this paper, we present an automated graphing system for mathematical
pedagogy. Graphs are an essential tool in the classroom, allowing students to visualize and interact

∗Work was completed as an intern at Merlyn Mind Inc.

NeurIPS’23 Workshop on Generative AI for Education (GAIED).



with mathematical concepts [4]. Our automated graphing system takes in utterances, converts them to
mathematical expressions, and graphs them with the Desmos interface [3]. This simplifies the process
of creating graphs in the classroom, allowing teachers to more easily incorporate math visualization
techniques into their lessons without disrupting classroom flow.

Our contributions are:

• the design of a benchmark dataset of graphing problems based on Common Core standards
[7]

• an automated graphing system combining an LLM with a mathematical solver

• an autoevaluation pipeline to evaluate different versions of our system

• results demonstrating the LLM+Solver system performance against an LLM-only system

Incorporating a solver into an LLM system provides a foundation of accuracy, as LLMs alone are
incapable of reliably solving math problems. This allows the system to produce accurate graphs
even for difficult, multi-step problems requiring complex reasoning. Mathematical solvers such as
Wolfram Alpha [5] can provide accurate answers for many categories of problems, but they are not
capable of understanding all types of natural language. As a result, an LLM is necessary to phrase
queries to the solver based on the natural language instructions it is given. Our system also provides
detailed explanations to accompany graphs, as it is vital for students to thoroughly understand the
problem-solving process. By combining an LLM with an external tool, we produce an automated
graphing system with strong potential for educational use.

2 Dataset

The Common Core standards [7] are a set of national educational standards describing what students
are expected to know at each grade level, and they have been widely adopted in the United States.
Based on the math Common Core standards, we identify a set of learning objectives that teachers
use visualization tools to teach in the classroom. We use these categories as the basis of our dataset,
creating approximately 10 questions per category to evaluate our system on.

Table 1: Question categories based on Common Core standards

Standards

Construct Circles 7.G.B.4
Proportional Relationships 8.EE.B.5
Inequalities 7.EE.B.4
Lines 5.G.A.1, 5.G.A.2, 6.NS.C.8
Systems of Linear Equations 8.EE.C.8
Identify Zeros of Polynomials HSA-APR.B.3, HSF-IF.C.7
Systems of Linear and Quadratic Equations HSF-IF.C.7
Identify Intersections HSA-REI.C.6, HSA-REI.C.7
Linear Inequality Systems HSA-REI.D.12
Identify Extrema, Intercepts, and Asymptotes HSF-IF.C.7
Transform Graphs HSF-BF.B.3
Graph Tangents to Circles HSG-C.A.4

The categories included in our datasets and the style of utterances were refined through teacher
feedback. From these categories, we create two datasets; the first (referred to as the utterance-focused
dataset) is focused on use cases a teacher might want to have available in the classroom. The
utterances in this dataset are written as commands a teacher might say, as opposed to written-out
problems for a student to solve. The dataset is mainly comprised of simpler, single-step problems
that a teacher might use to demonstrate intermediate steps in the process of solving a problem.

Our other dataset (referred to as the textbook-focused dataset) is focused on multi-step, complicated
problems that require tool use to solve. The main topics in this dataset are a superset of those in the
teacher-focused dataset, but the problems are geared towards demonstrating the utility of tool use in

2



LLMs. In contrast to the utterance-focused dataset, we include word problems. The problems in this
dataset are mainly taken from sources such as Khan Academy and IXL.

The datasets include a column for the problems and a column for the graph input associated with the
problem. As the system is meant to be used through natural language commands, we also included a
column with the utterance for the problem (e.g. “Graph y = 5x2 + 3” vs. “Graph y equals five x
squared plus three”). This column was automatically generated with GPT-4 [8] based on the original
problem column and manually checked over for accuracy. The utterance-focused dataset contains 76
questions across seven categories, and the textbook-focused dataset contains 164 questions across
fifteen categories.

Table 2: Example row from utterance-focused dataset

Processed Utterance Natural Language Utterance Graph Input

Reflect y = 5x - 4 across the y-axis Reflect y equals five x minus four across
the y-axis

y = -5x - 4

3 System

Figure 1: Overview of LLM+Solver automated graphing system

The system consists of three main components: the creation of the solver query, the generation
of a written explanation based on the solver’s output, and the generation of the Desmos graphing
expressions based on the solver’s output. In this paper, we use Wolfram Alpha as the solver and
GPT-4 as the LLM, but the main principles of the system can be broadly applied to other tools and
LLMs. We implemented this system in Python, using the OpenAI and Desmos APIs to create a
problem-solving interface.

For a given problem, we create the solver query by prompting the LLM with instructions and a series
of examples demonstrating how to write queries for certain math problems. These examples were
chosen by identifying problems the LLM consistently misunderstood. The LLM is also provided with
the spoken-utterance version of the problem and the calculator state. The calculator state contains the
equations that have previously been graphed in the graphing window, and passing this state allows
the system to incorporate this information into its problem-solving process. For the scope of this

3



paper, we focus on single-turn utterances. Below is a truncated version of the prompt used to create
the Wolfram Alpha query:

Write a Wolfram Alpha query that can be used to solve the problem. The main
purpose of the task is to find the numerical answer to the problem, not to graph the
problem. When writing a query for a word problem, only include the necessary
equation to solve the problem. Ensure that the query is acceptable by the Wolfram
Alpha engine.
For example, if you are asked:
Graph y = 6x2 + 4 and find the local maxima and minima.
Calculator state: []
You generate:
Find the local maxima and minima of y = 6x2 + 4

Once the query has been generated, we input it to our solver. Wolfram Alpha provides a set of pods
for each query, with each pod containing a different category of information related to the query.
Wolfram Alpha also provides step-by-step solutions for some problems. From these results, we extract
the solution (generally the second pod, after the “Input Interpretation” pod) and the step-by-step
solution if it is present.

To generate an explanation of the problem, we prompt the LLM with a zero-shot instruction. Along
with the prompt, we provide the natural language utterance version of the problem, the calculator
state, the numerical solution as given by the solver, and the solver’s step-by-step solution, if it is
present.

In the cases where Wolfram Alpha provides a step-by-step solution, the LLM only has to expand
upon this solution by providing more detail and explaining the reasoning behind the steps. When
there is no step-by-step solution given, it must write its own explanation from scratch based on the
problem and numerical solution.

In order to generate the Desmos graphing expressions, we prompt the LLM with instructions and
a set of examples. In the prompt, we ask for a chain-of-thought, which helps to generate more
accurate expressions. Chain-of-thought prompting has been shown to improve the accuracy of LLMs’
reasoning, especially with regards to math problems.[12][1] As with the explanation prompt, we
also provide the natural language utterance version of the problem, the calculator state, the solver’s
numerical solution, and the solver’s step-by-step solution, if there is one. The large number of
examples in the prompt helps guide the LLM towards producing valid Desmos expressions. The
provided examples were created by identifying common points of failure, and writing problems that
demonstrate how to accurately deal with these issues.

4 Evaluation

4.1 Autoevaluation

Traditional evaluation metrics for text similarity fail for comparing mathematical statements due to
the precise nature of math statements. Consider the statement 5=2+3. Lexical similarity metrics, such
as Jaccard distance, would consider the statement 5=2+4 more similar than 5=4+1 since the former
statements shares more words in common than the latter. Furthermore, many existing similarity
metrics do not recognize common mathematical symbols as tokens and thus cannot be converted
into a numerical representation. Similarly, directly examining the visual graph output through a
multimodal approach is unlikely to be precise enough for our purposes. Although ChatGPT may be
able to evaluate equivalence for simple expressions, its judgement becomes inconsistent for more
complex expressions. As a result, evaluating the equations output by the automated graphing system
at a large scale is nontrivial.

Due to these limiting factors, we create a new autoevaluation pipeline that can precisely compare
two mathematical statements. We use the computer algebra system SymPy [6] to evaluate the
mathematical equations output by the LLM in our LLM+Solver system when responding to given
questions. In order to compare two equations, we use SymPy to isolate a variable and compare the
resulting expressions on the other side of the equality.

4



Although this approach leads to accurate checking of math statements, an issue is that SymPy cannot
parse poorly formatted equations, which the LLM in the LLM+Solver system may produce. To
combat this, we use an LLM as a backup in the autoevaluation process, where if SymPy cannot parse
an equation, it will let the LLM compare the two math statements and output a result.

We construct a set of ground truth evaluations by running all the questions in our datasets through the
LLM-only system, and manually evaluating if the system’s output matches the correct answer. This
manually-benchmarked dataset allows us to run different versions of the autoevaluator on the dataset
and check how its evaluations compare to our manually-written evaluations.

The simpler version of our autoevaluator only uses an LLM to compare two equations. Using GPT-4
as the LLM, we compare the results of LLM-only and LLM+SymPy autoevaluators on the entirety of
our utterance-focused and textbook-focused datasets. In the table below, we display the dataset-wide
results as well as the results for selected categories.

Table 3: Accuracy of LLM-only autoevaluator and LLM+SymPy autoevaluator as compared to
manual evaluations

Utterance-
Focused
Dataset

Textbook-
Focused
Dataset

Systems of Linear
Equations

Graph Inverse
Functions

Graph Lines

LLM-Only 77% 76% 50% 40% 92%
LLM+SymPy 86% 88% 100% 80% 85%

The addition of SymPy to the autoevaluation pipeline increases the accuracy of evaluations sig-
nificantly on almost all categories, especially in Systems of Linear Equations. In general, the
LLM+SymPy autoevaluator performs better than the LLM-only autoevaluator on problems that are
well-structured but computationally difficult. These problems are easily interpretable and can be
solved by SymPy, as it can easily handle complex algebraic manipulations. However, an LLM-only
approach would likely make mistakes performing algebra.

We see a drop in performance for a few categories, such as Graph Lines. This decrease in accuracy
is generally due to SymPy and the LLM both misunderstanding the formatting of the equation. An
important point to note is that the LLM+SymPy autoevaluator almost never marks incorrect answers
as correct. As a result, we can trust that nearly all the responses it marked as being correct are actually
correct, and manually check if the responses it marked as being wrong are in fact wrong.

4.2 Results

In order to evaluate the LLM+Solver system, we run the autoevaluator and manually assess all
of the outputs the autoevaluator marks as being incorrect. The autoevaluator greatly reduces the
manual-assessment burden as we only have to look over a small subset of the total outputs, but this
does introduce a bias as we do not double-check the entire dataset. However, false negatives (the
autoevaluator determining a generated expression is equivalent to the ground-truth expression when
they are actually inequivalent) are very rare as SymPy will only mark expressions equivalent if they
are genuinely equivalent, and GPT-4 rarely marks inequivalent expressions as being equivalent. False
positives are somewhat common, leading to the necessity of manual checking. Across both datasets,
the autoevaluator marked 46% of problems as being incorrect. After manual evaluation, we found
that the false positive rate was 48%. There were no false negatives.

We compare the performance of the LLM+Solver system to the results of the LLM-only system.
The LLM-only system consists of directly prompting an LLM with instructions to write Desmos
expressions and examples, while also providing the natural language utterance problem and the
calculator state. This prompt is very similar to the prompt used in the LLM+Solver system, but with
different examples as both systems have differing inputs. Although the framework of the system
can be applied to LLMs and solvers broadly, in this paper we evaluate using GPT-4 as the LLM and
Wolfram Alpha as the solver. Below are the results for the LLM-only system and the LLM+Solver
systems:

5



Table 4: Accuracy of LLM-only and LLM+Solver models

LLM-only LLM+Solver

Utterance-Focused Dataset 63% 85%
Textbook-Focused Dataset 55% 75%

Table 5: Accuracy of individual categories in utterance-focused dataset

LLM-only LLM+Solver

Graph Circles 92% 100%
Transform Shapes 64% 73%
Intersections of Lines 20% 100%
Graph Lines 92% 100%
Local Minima and Maxima 60% 90%
X Intercepts, Y Intercepts 50% 80%

Table 6: Accuracy of individual categories in textbook-focused dataset

LLM-only LLM+Solver

Proportional Relationships 100% 100%
Linear Inequality Systems 50% 0%
Graph Inequalities 70% 50%
Graph Lines 84% 93%
Graph Polynomials + Identify Zeros 50% 80%
Systems of Linear + Quadratic Equations 0% 85%
Graph Circles 100% 100%
Transformations of Functions 91% 91%
Graph Inverse Functions 100% 100%
Tangents to Parabolas 0% 0%
Tangents to Circles 15% 77%
Local Minima and Maxima 10% 100%
Linear and Nonlinear Functions 50% 60%
Systems of Linear Equations 20% 90%
Rigid Transformations + Dilations 50% 90%

The addition of the solver results in a significant performance increase on both the utterance-focused
and textbook-focused datasets. The greatest performance increase occurs in categories such as Local
Minima and Maxima, X and Y intercepts, Intersections of Lines, and Tangents to Circles. These
problems require complex calculations which are difficult for GPT-4 to carry out by itself, meaning
that GPT-4 will frequently get them wrong. However, it is very easy to write a Wolfram Alpha query
to solve these problems. As a result, the LLM+Solver system shows strong improvement over the
LLM-only system for these categories.

The LLM-only system struggles the most in problems that require complicated reasoning and
calculations to solve, such as the categories Tangents to Parabolas and Systems of Linear + Quadratic
Equations. It tends to fail either by solving the problem with an incorrect method or executing
calculations incorrectly. It succeeds in categories that require minimal reasoning and mathematical
calculations, such as Proportional Relationships and Graph Inverse Functions.

For many categories, the performance of the LLM-only system was strong to begin with, such as
Circles, Proportional Relationships, and Graph Lines. These categories contain simple problems with
little mathematical calculation, so GPT-4 is able to succeed at these problems without the help of a
solver. There are some categories for which there are no Wolfram Alpha queries that can be used to
solve the problem, such as Transform Shapes and Transformations on Functions. These categories
do not show much change in the performance of both systems, as Wolfram Alpha cannot be used to

6



provide answers for these categories. Incorporation of a more powerful tool, such as Python, could
allow the system to successfully solve these problems.

We see a decrease in performance in the two categories dealing with inequalities. While the
LLM+Solver system outputs functionally correct inequalities, it formats inequality signs in a manner
that could not be accepted by Desmos, resulting in invalid graphs. This could be addressed with an
extra instruction in the prompt explaining how to format inequalities. We also see poor performance
in the Tangents to Parabolas category. In the case of questions asking for tangents through a point
not on the parabola, Wolfram Alpha provides a correct result, but the accompanying step-by-step
solution contains the answer to a different problem. As a result, the LLM+Solver system returns the
incorrect answer. This issue has a more difficult solution, possibly requiring us to classify inputted
problems and remove Wolfram’s step-by-step solution in these cases.

5 Discussion

Overall, the results of this paper highlight the potential of tool use in combination with LLMs. By
incorporating a solver into our LLM-based system, we were able to produce an automated graphing
system with significantly higher accuracy. Through the design and development of an LLM+Solver
system, a benchmark dataset based on Common Core, and an autoevaluation pipeline, we created an
effective automated graphing system and the means to easily evaluate future iterations. The system
has strong performance, and for many categories of problems it can consistently produce accurate
outputs.

While the system is not yet fully reliable, there are many directions we could take in the future to
improve it. For example, we could develop a classifier to distinguish between problem types, and
make adjustments to the system for the individual problem categories. This individualized approach
could improve accuracy for some categories as compared to our current, one-size-fits-all system.
We also plan to evaluate our system using an open-source LLM instead of GPT-4, and make use of
fine-tuning to improve the end-to-end latency of the system.

Acknowledgments and Disclosure of Funding

We would like to thank Ravi Kokku, Marc Pickett, Prasenjit Dey, Deepak Akkil and Paul Haley for
helpful discussions and feedback.

References
[1] Zheng Chu, Jingchang Chen, Qianglong Chen, Weijiang Yu, Tao He, Haotian Wang, Weihua

Peng, Ming Liu, Bing Qin, and Ting Liu. A survey of chain of thought reasoning: Advances,
frontiers and future, 2023.

[2] McKinsey & Company. What’s the future of generative AI? an early view in
15 charts. https://www.mckinsey.com/featured-insights/mckinsey-explainers/
whats-the-future-of-generative-ai-an-early-view-in-15-charts, 2023.

[3] PBC Desmos Studio. Desmos graphing calculator. https://www.desmos.com/calculator.

[4] Dermot Francis Donnelly-Hermosillo, Libby F. Gerard, and Marcia C. Linn. Impact of graph
technologies in k-12 science and mathematics education. Computers & Education, 146:103748,
2020.

[5] Wolfram Alpha LLC. Wolfram alpha. https://www.wolframalpha.com/.

[6] Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B. Kirpichev,
Matthew Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rath-
nayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta,
Shivam Vats, Fredrik Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Štěpán
Roučka, Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Sco-
patz. Sympy: symbolic computing in python. PeerJ Computer Science, 3:e103, January
2017.

7

https://www.mckinsey.com/featured-insights/mckinsey-explainers/whats-the-future-of-generative-ai-an-early-view-in-15-charts
https://www.mckinsey.com/featured-insights/mckinsey-explainers/whats-the-future-of-generative-ai-an-early-view-in-15-charts
https://www.desmos.com/calculator
https://www.wolframalpha.com/


[7] Council of Chief State School Officers National Governors Association Center for Best Practices.
Common core state standards. https://www.thecorestandards.org/Math/, 2010.

[8] OpenAI. Gpt-4 technical report. https://arxiv.org/abs/2303.08774, 2023.

[9] Bhargavi Paranjape, Scott Lundberg, Sameer Singh, Hannaneh Hajishirzi, Luke Zettlemoyer,
and Marco Tulio Ribeiro. Art: Automatic multi-step reasoning and tool-use for large language
models, 2023.

[10] Shishir G. Patil, Tianjun Zhang, Xin Wang, and Joseph E. Gonzalez. Gorilla: Large language
model connected with massive apis, 2023.

[11] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools, 2023.

[12] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, Quoc Le, and
Denny Zhou. Chain of thought prompting elicits reasoning in large language models. CoRR,
abs/2201.11903, 2022.

[13] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models, 2023.

8

https://www.thecorestandards.org/Math/
https://arxiv.org/abs/2303.08774

	Introduction
	Dataset
	System
	Evaluation
	Autoevaluation
	Results

	Discussion

