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Abstract

Chatbot interfaces for LLMs enable students to get immediate, interactive help on
homework assignments, but doing so naively may not serve pedagogical goals. In
this workshop paper, we report on the development and preliminary deployment of
a GPT-4-based interactive homework assistant for students in a large introductory
computer science course. Our assistant offers both a “Get Help” button within a
popular code editor, as well as a “get feedback” feature within our command-line au-
tograder, wrapping student code in a custom prompt that supports our pedagogical
goals and avoids providing solutions directly. We have found that our assistant can
identify students’ conceptual struggles and offer suggestions, plans, and template
code in pedagogically appropriate ways—but sometimes inappropriately labels
correct student code as incorrect, or pushes students to use correct-but-lesson-
inappropriate approaches, among other failures, sometimes sending students down
long frustrating paths. We report on a number of development and deployment
challenges and conclude with next steps.

1 Introduction

The recent wide availability of ChatGPT and similar Large Language Models (LLMs) has given
students in introductory Computer Science (CS) courses a tempting alternative to asking for help on
programming assignments—and potentially waiting hours to receive it. However, while naively used
LLMs do help students solve assigned problems, typically by providing them with correct answers
along with explanations, such use of LLMs allows students to avoid the process of developing
solutions themselves and the learning associated with this process.

In this paper, we report on our experiences developing and deploying a “helper bot” homework assis-
tant for students in a large introductory computer science course at a large public university. Students
initially could only use the bot by clicking on a “Get Help” button in their code editor, receiving back
a pop-up notification containing advice for how to proceed on the homework assignment, given their
current code. Later in the semester, however, we added a “feedback” option to the course “autograder”
command-line tool, allowing all students access to the same feedback tool, regardless of editor choice.

Our bot identifies the problem the student is working on, collects their code, and wraps these in a
custom prompt for GPT-4. We designed this prompt to steer GPT-4 towards feedback that mirrors
how we ourselves typically approach student questions: identifying whether the student understands
the question, which concepts students might need reinforcement on, and whether they have a plan,
and then helping students by providing conceptual, debugging, or planning support as appropriate.
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In designing our system, we encountered a number of challenges, including prompt engineering
challenges and latency constraints that steered our overall system design away from a chained,
complex analysis-and-response system and towards a simpler single-prompt approach.

We report on these challenges and their consequential design impacts and provide insights from our
initial deployments with students, including the costs of incorrect bot responses, and challenges in
assessing performance.

2 Background & Related Work

Generative models such as ChatGPT,1 OpenAI Codex [2], DeepMind AlphaCode [16], Amazon
CodeWhisperer, and GitHub Copilot2 offer promising opportunities for enriching the learning
experience of students. These models have already been leveraged by educators in different areas
of Computing Education [10, 8, 12, 6, 23], where they accelerate content generation and seem to
be impacting the relevant skills students gain in introductory CS courses. Researchers have studied
LLMs in areas such as generating code explanations [14, 1, 19, 9], providing personalized immediate
feedback, enhancing programming error messages [15], and automatic creation of personalized
programming exercises and tutorials [26, 30, 25] to enhance the comprehensiveness of course
materials.

However, the integration of LLMs in introductory CS instruction comes with challenges. Students
could become overly reliant on automation (a concern at least as old as calculators [5]), potentially
hindering their development of critical problem-solving skills—though recent work suggests such
hindrance is not inevitable for programming assistance [13]. Taken to an extreme, the resulting
absence of human interaction could have negative effects, alongside other ethical concerns related
to plagiarism and the responsible use of LLM-generated code. To maximize the benefits of LLMs
while mitigating these challenges, a thoughtful and balanced approach to their incorporation into
introductory CS courses is essential [7, 20, 18].

By deploying LLMs as intelligent programming assistants, students can receive immediate, person-
alized support and guidance, fostering a deeper understanding of coding concepts and promoting
self-paced learning—just as did pre-LLM Intelligent Tutoring Systems (see [4] for a review, and [27]
for a specific example). However, the ability of LLMs to generate tailored resources, such as tutorials
and code examples, not only expands the available learning materials but also accommodates students’
varying learning styles and preferences—though these generated materials are not always better [22].
Educators should integrate LLMs as complementary tools, striking a balance between automation
and human interaction, while emphasizing the development of critical problem-solving skills and
responsible coding practices, ultimately serving students better in their CS education. Researchers
are increasingly utilizing LLMs as chatbots in courses [9, 29] or online educational websites [21]
to provide immediate personalized feedback, human-AI pAIr programming paradigm [28], or tools
in supporting students’ development of programming skills [24, 11, 3], including CodeHelp [17], a
system released too recently to inform our own design, but bearing a number of similarities even if
restricted in its ability to build on prior responses as our assistant does here. This paper contributes
to the body of educational research and pedagogical innovation, demonstrating the transformative
potential of technology-driven approaches in reshaping how CS fundamentals are taught and learned.

3 Method: Notes on Design & Deployment

We considered a number of ways to expose LLM capabilities to students, including varying interaction
modes (e.g., chat conversations, Q&A, one-shot requests) and support modes (e.g., debugging,
conceptual scaffolding, student assessment). Though there are many ways LLMs seem likely to
impact early programming instruction, we chose to address one of the more challenging bottlenecks
we faced in our large course at a large public institution: the availability of tutors and other staff to
help students when they get stuck on homework problems. In addressing this specific challenge, we
chose early on to focus specifically on debugging homework assignments.

1https://chat.openai.com/
2https://copilot.github.com/
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! helper-bot.tld

Figure 1: Screenshot of our custom prompt engineering tool. On the left, a specific homework
assignment question, with a manually-authored “Notes” containing the correct solution and a pointer
not to swap conditions; on the right, a set of prompts, checkpoints, and outputs. Here, a prior year
student’s incorrect code is loaded under “Checkpoint prompts”, the Help_cp prompt is activated (red
outline), and the output is displayed below the prompt text.

One early decision with pedagogical implications was whether to support students responding to the
assistant in natural language. Three concerns, about hallucinations, about students sharing personal
information with a third party, and about what harms might come from an unmonitored chat interac-
tion, led us to deploy a one-click “Get Help” interaction mode without an opportunity for follow-up.
This meant that one valuable pedagogical tool—having students explain their understanding of the
problem—would remain out of reach in this initial deployment.

Our development process was based on the set of homework questions assigned throughout our
course, author-generated constructions of incomplete code, and a set of student checkpoints—also
incomplete code, often containing errors—collected over the prior year. We developed our system by
testing our prompts-under-development on these homework problems using a custom-built prompt
engineering system (see Figure 1).

Initial evaluations of GPT-4 on a small set of typical introductory CS questions used in our course in
prior years suggested that GPT-4 could provide effective support across many avenues, including
debugging—and was much more effective than GPT-3.5 and other LLMs, which focused our tuning
efforts on prompt engineering over fine-tuning and other methods. Following a common tutoring
pattern, we designed a prompt that would try to assess student conceptual knowledge, based on the
provided code, and offer syntactical, logical, or even template-code suggestions—but not solutions.
This prompt explicitly includes a sequence of steps to consider in response to student code, modeled
in part on our own personal tutoring processes:

1) Is the student missing any conceptual knowledge? Would a refresher help?
2) Is the code they have already, if any, on the right track?
3) How close are they to a working solution?
4) Did they follow your previous instructions? If not, rephrase and offer

advice in a different way.
5) Do they have a plan -- if not, help them generate one.
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6) If all else fails, provide a template of the code -- perhaps missing
the key recursive case and base case if condition.

Though we avoided students explicitly writing natural language “chat” messages to the bot, we did
want some degree of continuity—which we achieved by also including up to three prior student code
- bot advice exchanges if available (step 4).

In addition to the steps above, the prompt also includes instructions such as Do not give the
student the answer or any code. and Limit your response to a sentence or two
at most. A earlier draft version of this prompt appears in the red outline in Figure 1, with the
complete deployed prompt reproduced in Appendix A.

3.1 Development & Prompt Engineering Challenges

From the literature, we expected that trying to engineer dialogues through an LLM would be
challenging in ways that would be hard to address [31], and indeed we found this to be true for us
as well. Early on, in testing extended dialogue interactions, we found an increasing likelihood that
GPT-4 would provide a direct solution as the conversation extended—validating our decision to start
with a single-shot request rather than dialogue.

Many initial challenges were addressable through prompt changes alone: for example, by including
the instruction “Don’t assume a problem needs to use recursion unless it’s explicit” we avoided
spurious suggestions that loop-based code should be rewritten using recursion.

But one particularly frustrating challenge illustrates a number of the failures we observed early on:
an over-eagerness to “correct” student code that was, in fact, already correct. One such homework
problem asked students to fill in a template to compute a + |b|, using the operators add and sub
based on whether b < 0 (see Fig. 2). With an early version of our prompt, GPT-4 would consistently
question the correct solution, asking students to think about what should be done in the case b < 0.

In addressing this and other similar issues, we experimented with asking GPT-4 to first generate a
complete, correct solution, and then copy the student’s code, reasoning that having these within the

1

2

3

Figure 2: Screenshot of the VS Code user interface as students see it. Note the “Get [redacted]
Help” button in the toolbar at the upper right-hand side (1), which students click to send their code
to the helper bot. Bot replies appear in a pop-up notification (dialog window (3) with [Thanks,
helpful!] and [Not helpful...] buttons) containing the bot’s advice on the student’s current code ((2),
red outline)—in this case, a helpful suggestion that the student shouldn’t call the functions add and
sub, but merely assign them to variable f.
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Figure 3: Usage patterns across eight weeks of homework; in weeks 7-8 (right-hand side, bottom
two plots) we expanded deployment of our assistant to the full class section of approximately 1300
students. x-axis ticks mark midnight on the days specified; y-axis ticks identify specific questions
within the week’s assignment, with “N/A” indicating that no specific question was identified. Requests
are binned into time blocks; bar y-height represents the number of requests in each block, scaled
to the row height—but note that these not comparable across individual weeks, in weeks 7-8 total
requests increased by a factor of 30. Student IDs are binned into ten different colors for visibility.

prompt response would reduce the likelihood that GPT-4 would incorrectly label correct code as
containing errors. Unfortunately, this approach introduced substantial additional latency that made us
decide against deploying it: in many cases, it added several hundred tokens to the output—none of
which could be shown to students in a streaming fashion—increasing time-to-response by tens of
seconds, an unacceptable trade-off given our design goal of rapid interactive feedback.

Hoping to find a prompt that would prove robust to variations in course content, we initially avoided
any problem-specific text beyond a statement of the problem itself. However, we ultimately added
a problem-specific note for those homework problems that required extra steering. In the operator
assignment above, this note contains a solution to the problem.

3.2 Prototype Deployment

We implemented a phased deployment in our course across two sections and using two modalities.
Our goal in this prototype deployment was to understand the usefulness and limitations of the helper
bot, reported on in §4. In one modality, students click on a “Get Help” button (see Figure 2) in the
VS Code3 editor toolbar to activate our helper bot extension. The extension collects students’ code,
makes a best guess of which homework problem the student is working on (several problems often
appear in a single file), and constructs a request. In the second modality, students run an autograder
which collects the student’s code, any errors, and constructs a request from these. These requests
reach a server run by our instructional staff, which wraps the student data in our prompt and passes
along the request to GPT-4, and saves the request and GPT-4’s response for further analysis.

Students are informed that, in using our assistant, all code they write will be sent to OpenAI via
Microsoft Azure, and that they should not include any content in their code files (e.g., comments)
that they are not comfortable sharing.

3Visual Studio Code, https://code.visualstudio.com
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Figure 4: Office hours “requests” by day (4 days/week), across the full set of students. (In our course,
students request help during office hours by filing a ticket through an automated system.) Red bars
indicate days on which a homework assignment was due. Though too small a dataset to draw a
statistical inference, visual inspection suggests a reduction in office hours demand after our assistant
was more broadly released (green line).

4 Findings

We initially deployed our helper bot VS Code extension to an experimental section of 400 students a
few days into the start of our academic year, followed by a full-scale deployment in week 7 for the
approximately 1300 students across both course sections. The students in the initial experimental
section were not randomly selected, but rather were drawn primarily from a pool with a stronger
academic background in math and computing. In conjunction with the wider deployment, we also
enabled access through the autograder tool students could already run from the command line to
validate their code against a set of test cases.

Usage patterns suggest that students are finding the bot helpful, returning to it multiple times as they
engage in homework (see Figure 3). As expected, usage increases as the assignment deadline nears,
and is concentrated in the late afternoons and evenings.

Engagement with the assistant seems to be dependent in part on the types of errors student encounter
and the feedback they receive. Though we have not completed a detailed systematic analysis,
anecdotally, syntax errors and function misuse (when correctly identified by the bot!) are commonly
resolved with a single request, while conceptual misunderstandings are unsurprisingly much trickier;
a common pattern for the latter is a student repeatedly requesting help while the bot responds with
minor variations on the same message, until finally through GPT-4’s stochasticity a respond contains
a key new component that enables the student to progress. (A few weeks into the semester, we added
the “context” functionality described earlier; this helped substantially with response diversity, but
helped students less than expected—in part because it is not always clear why the prior bot response
was inadequate.)

Finally, we also observed a decrease in the number of requests for help during office hours, as shown
in Fig. 4, after the wide release of the assistant just before homework 7.

4.1 Successes & Failures

Overall, repeated use of our assistant by individual students, alongside anecdotal reporting and
explicit [Thanks, helpful!] feedback, suggests that students derive at least some value from having
access to the assistant.

On the “successes” side, we found GPT-4’s conceptual explanations quite strong; consider this
explanation of the recursive step and the base case in a coin-counting problem:
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Consider this: for each coin, you can either include it or exclude it. If you include
it, you subtract its value from the total and recurse. If you exclude it, you move to
the next coin and recurse.

...and...

The base case of your recursion would be when the remaining change is 0, in which
case you have found a valid way to make a change, so you should return 1. If the
remaining change is less than 0 or there are no more coins to use (i.e., the current
coin is None), you should return 0 because there are no valid ways to make change
in these cases.

Even in cases where multiple errors were present in student code, a single response enumerating
them could provide a lot of value at once, in a format that allowed students to re-read as they worked
on their code—a hidden benefit over traditional spoken 1:1 tutoring.

On the “failures” side, the predominant error modes could be characterized as false positives—the
assistant suggests the student code is correct even when it has errors, or offers misleading solutions—
and false negatives—the assistant insists the student code has errors even though it is correct.

False negatives are relatively straightforward to address in the autograder mode—the autograder
simply does not ask the assistant for feedback if all test cases pass—and we plan to deploy similar
functionality to our extension.

In contrast, false positives posed a serious problem for students, and could cause substantial extra
work as students found themselves following suggestions that sometimes led students in directions
they had a hard time unwinding from on their own. In one memorable case, the assistant insisted that
no error was present when asked for help with scheme code in which an if statement’s condition
had a misplaced ). In response, the student wisely included the error message received from the
interpreter as a comment—and this helpfully led the assistant to suggest the student “ensure all
parentheses are matched”. As a result, the student manually went through and reconstructed every
pair of parentheses from scratch. What was originally a single misplaced ) resulted in a function
rewritten from scratch over the span of 25 minutes. Of course, this case is memorable, but not
terrible—without assistance, the student would likely have gone through a similar process.

The most pernicious false positives were cases in which the suggestions were valid, but violated
requirements of the assignment, such as a fixed template or other restrictions. Faced with a fixed
template on the one hand, and bot suggestions to modify template components on the other—and
thus conflicting errors from the autograder and the assistant—students in this situation would often
oscillate between valid solutions that satisfy one or the other feedback mechanism.

5 Conclusions & Next Steps

We reported here on preliminary findings from an early deployment of a GPT-4-based interactive
programming support tool for introductory CS courses. We found a number of successes, identified
a few challenges and potential pitfalls, and reflected on solutions and paths toward more complete
automated support for introductory CS students.

In the short term, we hope to continue reducing the error rate through additional tuning and training.
To further augment the context, we intend to offer the student options to request different kinds of
help and rate the helpfulness of the hint. Simple responses like “Please elaborate.” or “Can you
explain it another way?” could provide valuable context to steer subsequent prompts, while feedback
on hint quality could drive a more intelligent, reinforcement learning based prompt engineering
system.

In the long term, we plan to analyze bot usage data to explore three further questions around impacts
on student performance, understanding of student use, and evaluation of student sentiment. How does
the performance of students who rely on the tool compare to those who do not use it? At what point
in the problem-solving process do students use the bot? Does the tool serve as an effective substitute
for office hours or online course forums (e.g., Ed, Piazza)? And how do students feel interfacing with
the bot compared to a TA? These questions are critical to understanding the needs of students and the
opportunities in offering automated support to the next generation of computer scientists.
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A Final Prompt

Our final prompt is as follows. Note that the %NOTE% marker is replaced by text specific to the
homework assignment selected by the student.

You are a very talented 61a tutoring bot, the intro CS class at UC Berkeley;
you are helping students learn to program.

A student has asked for help. The question they are trying to solve is
in the next message, and in the following message is (all) the code the
student has so far, including some code that is for other questions –
ignore that other code. If the student asks for help repeatedly, the
conversation will continue with your subsequent reply and any updated
student code.

First: identify the student’s code. Is it correct and complete? If so,
tell them "That looks like it should work – give it a shot and feel free to
include any error message in a comment!"

If not, here’s what you should analyze, based on their code:

1) Is the student missing any conceptual knowledge? Would a refresher
help?

2) Is the code they have already, if any, on the right track?

3) How close are they to a working solution?

4) Did they follow your previous instructions? If not, rephrase and offer
advice in a different way.

5) Do they have a plan – if not, help them generate one.

6) If all else fails, provide a template of the code – perhaps missing the
key recursive case and base case if condition.

%NOTE%

Do not give the student the answer or any code. If there’s an obvious
bug, direct them to the location of the bug. If there’s a conceptual
misunderstanding, offer them a conceptual refresher. Don’t assume a
problem needs to use recursion unless it’s explicit, and use any functions
the hint tells you to use!

Limit your response to a sentence or two at most. Be as socratic as
possible, and be super friendly.

Handing you off to the student now!
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