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Abstract

We describe an ongoing initiative to incorporate generative AI for online higher
education classes at a large public U.S. university. Our specific online-only class
setting poses special challenges: the technical backgrounds of incoming learn-
ers tend to vary widely across domains, making the potential for personalized
adaptation especially compelling; the majority of instruction is via pre-recorded
video, with some live office hours support and forum discussions, making it critical
to promote additional effective engagement and self-assessment. Toward these
goals, we describe what we have learned and been thinking about in our early
explorations, with an initial framework starting from using generative AI to create
questions and other rich metadata from lecture video that can support instructor-
and student-facing affordances for learning and discovery.

1 Introduction

Understanding students’ conceptual knowledge gaps enables educators to personalize their instruction
to for equitable learning outcomes [7]. However, with increasing classroom sizes and more diverse
populations of students in universities and MOOCs [37], addressing challenges faced by individual
students is getting increasingly difficult to handle at scale for educators [22].

While AI research has developed numerous tools to support instructors such as automatically gen-
erating practice question sets [34], personalized question set recommendations to students [29],
visualization of student performance, and generating lecture summaries [14], each such tool requires
careful engineering efforts and domain knowledge to collect and store data about courses as a basis
for developing student- or instructor-facing applications [5, 49].

Generative AI systems such as Large Language Models (LLMs) allow easy curation of data from
existing course materials (text, audio and video) through simple natural language prompts [21].
However, while applications of LLMs are rapidly growing due to their ease of on-demand personalized
content generation, we lack an understanding of how their use impacts various stages of current
educational scenarios [49]. Mapping out where LLMs can provide value in existing research in
education from Computer Science, Learning Analytics, and Data science can help us identify concrete
directions to integrate their capabilities for improving educational outcomes [9].

In this paper we describe ongoing field experiences towards incorporating generative AI for online
instruction settings in higher education at a large public U.S. university. Our specific online-only
learning setting poses special challenges: the technical backgrounds of incoming learners tend to
vary widely across domains, making the potential for personalized adaptation especially compelling;
the majority of instruction is via pre-recorded video, with some live office hours support and forum
discussions, making it critical to promote effective engagement and self-assessment. Toward these
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Figure 1: An overview of our data extracting from lectures using LLMs to create rich representations
of courses. We plan to use these representations to support several end use cases for both instructors
and enabling self-learning for students.

goals, we describe what we have learned and been thinking about in our early explorations and
initial framework for using generative AI to curate rich metadata from lecture video that can support
instructor- and student-facing affordances for learning and discovery.

We describe how we curated structured natural language data using LLMs for online degree courses,
how we evaluated the quality of the data, and the potential directions to integrate the data for building
applications that support student learning outcomes. Based on our work with this data curated from
lectures (transcripts and videos) using LLMs we highlight immediate applications (e.g., developing
question sets) [34], and also highlight what we believe are important new research directions, such
as experiments to evaluate LLM theory of mind [1] capabilities in assessing student’s concept
representations.

2 Holistic view of course data to support educational objectives

Any typical learning system [30] requires data about the concepts taught in the course. In our system,
for each lecture’s transcript in the course, we first segment it into segments using GPT-4. We used
simple but effective prompts such as "Split the given lecture into 4-5 segments. Each segment should
be topically coherent and the main topics across segments should be different", along with the lecture
transcript as input. We use insights from NLP research that segment boundaries split passages into
units that are topically coherent [17]. We call these segments “moments” of a lecture. For each such
“moment” we extract its summary, key definitions, key examples, and types of procedural vs factual
knowledge described in that moment. We used the prompt "List 5-7 key definitions, key examples,
procedural and factual knowledge described in the moment" and provided the associated moment text.
Next, for each moment, we also extract a set of questions representing that moment. Thus, for each
lecture, we have a set of key definitions, key examples, summary, and questions by the topics covered
in the lecture. Figure 1 provides a high level overview of this data extraction and some potential
applications it can enable.

For the moment, the lecture content being analyzed comes from high-quality transcripts of the lecture
audio, but we intend to extend the system to also process video images in preparation for exploiting
multi-modal LLMs. Our system also uses GPT-4 to extract metadata from other course resources,
such as learning objectives from the course syllabus, so that question generation can be applied to ask
about any relevant learning resources in the system. To date we have generated detailed meta-data
for 11 courses in our curriculum, containing thousands of topical questions and metadata about key
specific learning moments in a class video.

3 Generating rich course representations to support educational objectives

Extensive research in learning analytics [43] has developed and investigated tools to support instruc-
tors in improving educational outcomes. Examples of such tools are test-directed learning [40] or a
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tool to provide natural language feedback to student essays [46]. However, an important challenge in
using analytics derived from course activities is interpreting them to derive actionable insights or give
actionable feedback to students [19]. In the sections below we describe several areas where, based
on our field experiences so far, LLMs display increasingly impressive ability to generate output in
natural language descriptions, often with clear explanations, which can enhance communication of
insights for instructors and feedback for students.

3.1 Concept-level abstraction of lectures

Knowledge tracing [15] is one of the most widely used methods to track student’s progress on concepts
covered in the course. Knowledge tracing models students’ progress on concepts as as a Markov
decision process with transitions on correct and incorrect outcomes on the concept. Extracting relevant
concepts from courses is the most challenging aspect, and data mining approaches rely on extracting
important terms from textbooks [6] or online lectures and apply dimensionality-reduction techniques
such as matrix factorization [44]. However, it is difficult to control the granularity of concepts without
direct supervision, and extraction does yield high quality results on lecture dialogues [42].

LLMs can identify and represent important concepts in natural language even from challenging
sources like dialogues [2]. Instructors can control the granularity of concepts by ensuring alignment
with an existing taxonomy or course syllabus. In our own data extraction of concepts from lecture
transcripts using GPT-4, using simple prompts like "Extract the key concepts from the lecture that are
present in the pre-defined course syllabus" has yielded reasonable success. The meta-data generated
is highly relevant to the lecture material. For example, for a lecture covering Random Forests, the list
of key concepts given was: Ensembles, Bagging, Boosting, Random forest Decision trees, Overfitting,
Supervised Learning, and Regression. Most of these concepts are highly relevant to Random forests
and are used in teaching it as well. For another lecture on KNN, the topics mapped were: KNN,
Supervised Learning, Classification, Feature Engineering, and Majority vote - all of which are directly
related to KNN. This shows that our method of mapping topics onto lectures is yielding fairly accurate
results.

3.2 Metadata generation from lectures

Other than questions and topic mappings, we also generate additional metadata from our lectures
– Lecture Summary, Procedural knowledge (the "How to" descriptions), Key Definitions, and Key
Examples. Following is a description of the metadata around the concept “Ensemble model”.

• Procedural Knowledge: This metadata captures knowledge related to creating the artifact
associated with the concept, using the concept, or applying that concept. For example,
following is the procedural knowledge associated with how to create an ensemble model:
“An ensemble model is created by combining multiple individual learning models to produce
an aggregate model that is more powerful than any of its individual learning models alone.
This is effective because different learning models, although each of them might perform
well individually, they’ll tend to make different kinds of mistakes on a data set. Typically
this happens because each individual model might overfit to a different part of the data. By
combining different individual models into an ensemble, we can average out their individual
mistakes to reduce the risk of overfitting while maintaining strong prediction performance”.

• Key Definitions. Key definitions capture the salient description of the concept as it would
occur in an encyclopedia or a course material. Following are example definitions for the
concept “Ensemble” and “Overfitting”.

– Ensembles: A method in machine learning that involves creating learning models by
combining multiple individual learning models to produce an aggregate model that is
more powerful than any of its individual learning models alone.

– Overfitting: A modeling error in machine learning that occurs when a function is too
closely fit to a limited set of data points.

• Key Examples. Key examples describe the instantiation of the concepts, so that students
can concretely understand the concept. For example GPT provides the following description
for “Random Forests”, which it provides as an example of the ensemble idea applied to
decision trees – “They are widely used in practice and achieve very good results on a wide
variety of problems. Random forests can be used as classifiers via the scikit learn random
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forest classifier class or for regression using the random forest regressor class both in the
sklearn ensemble module. The use of random forests helps to overcome the disadvantage of
using a single decision tree, which is prone to overfitting the training data”.

The purpose of this metadata is to supplement the questions as a study guide which the students can
use to review the lecture in a way that will help them in attempting the questions in our database.

3.3 Synthesizing questions to test concepts

Generating questions that tests student knowledge on concepts is a time-intensive process that
requires instructor domain knowledge and training. Methods to support instructors by automatically
generating questions include using templates or ML models trained on existing questions. However,
many approaches still generate questions starting with "what", fill in the blanks and controlling
difficulty has been challenging [29]. LLMs can ease generation of questions to test concepts but
we need robust evaluations of the quality of such questions [10] along dimensions like clarity,
informativeness, and distractor quality.

As part of our field study preparation we systematically assessed the quality of AI-generated questions
(using GPT-4) along quality dimensions based on recent question generation research (e.g. [33]). Two
human raters, graduate students in data science, used an evaluation rubric to rate 100 questions drawn
from two different courses. The raters assigned a binary label to the questions on the dimensions –
relevance (92%), grammar (99%), clarity (97%), answerability (97%), distractor plausibility (65%),
distractor homogeneity (80%), Difficulty, Contextual Specificity (10%) and Question-option disjoint.
The percentages indicate the percentage of questions that the raters rated as 1 for the respective
dimension. For difficulty of questions, the raters assigned the levels "Beginner", "Intermediate" and
"Advanced". For the question-option disjoint metric, a lower score translates to a higher question
quality since a question tagged "1" would mean there is an inconsistency between the question
statements and the options. Similarily, a "1" for contextual specificity indicates that the question
requires the context of the lecture to answer correctly (e.g., reference to a lecture figure). Thus, low
percentage of contextually specific questions is better.

We plan to vet all questions by human experts before deployment in any intelligent educational tool,
but for our initial offline experiments, the relatively high scores of the generated questions on the
dimensions suggests that most candidates could be retained, resulting in approximately 500 useful
generated questions per 4-week course, tagged with one or more key concepts/skills, that covered
all key moments of all lectures in multiple ways. We highlight that the metrics pertaining to the
distractors (distractor plausibility and distractor homogeneity) exhibited lower scores than other
metrics. To this end, we are working on a method to replace the distractors that are not up to the
required standard, which will greatly improve the overall quality of the questions. We also used
Cohen’s Kappa metric [32] to calculate the inter-rater agreement between the human annotators.
Table 1 summarizes the IRR agreement scores. We performed the evaluations for the questions
generated for Machine Learning/Data Science courses – 1) Supervised Learning and 2) Unsupervised
Learning. We found that the questions are better on some dimensions than others - i.e. some metrics
show much higher IRR agreement scores than others. The Grammatical correctness, Clarity, and
Answerability metrics have very high scores across majority of the questions. We plan on expanding
our method to other domains and do cross-domain evaluation. The IRR is lower for difficulty because
it can be a subjective metric for annotators, and we can not have objective criteria for annotators.

Table 1: IRR Scores for question evaluation dimensions
Metric κ score

Relevance 0.89
Grammar 0.99
Difficulty 0.60
Clarity 0.94
Contextual Specificity 0.92
Question-Option Disjoint 0.90
Distractor Homogeneity 0.77
Distractor Plausibility 0.65
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Other than human evaluation, we also used automated evaluation methods defined by Moore et al
[33] using a set of 19 item writing flaws (IWFs) from their study. These flaws are different errors
that can be committed while writing multiple choice questions – We replicated both their rule-based
and LLM-based methods for the complete set of 1850 questions for both the aforementioned courses.
Table 2 summarizes the results for both automated methods.

Table 2: Summary statistics for rule-based and LLM evaluation
Statistic Rule based

evaluation
score

LLM-based
evaluation
score

Passes all metrics (%) 18 22
Passes at least half metrics (%) 100 91
Fails one or no metrics (%) 50 55
Fails two or fewer metrics (%) 79 69
Average IWF (failures) per MCQ 1.61 1.86

For both methods, the majority of the questions pass a significant number of IWFs, with the average
failure being less than 2 IWFs for both methods. Other than that, almost all the questions pass at least
half of the metrics for both evaluation methods. While more work is needed to further decrease the
rate of IWFs, by making a few adjustments noted earlier, our results show that a significant fraction
of questions (about 20%) pass all IWF tests. Thus, based on the large scale of the initial question
candidate generation, our system produces many thousands of high-quality questions that will be
useful for deployment in live instructional settings, in concert with human verification.

3.4 Evaluating LLMs capabilities to generate natural language insights for courses

Some recent Theory of Mind experiments with LLMs suggest that LLMs may show at least limited
capabilities to reason about mental representations of characters in stories [27], although there have
been conflicting conclusions regarding those abilities [39]. While there is need for robust experiments
to establish Theory of mind capabilities of LLMs in social scenarios [38], evaluating whether LLMs
can reason about student’s conceptual knowledge gaps given their mistakes can help instructors as
well. For example, if instructors provide LLMs a list of questions and a student’s answers, can a LLM
accurately reason about the concepts that students are unaware of, diagnose why a student may have
made an incorrect inference, or develop strategies and activities to remediate those specific errors
in a given instructional setting? More research on methods, metrics, and datasets for assessing and
optimizing the use of educational theory-of-mind abilities of LLMs appears needed: the recent study
by Wang et al. [45] on how LLMs can assist with remediation of student math errors is a notable
example in this direction.

One example of an important consideration in this type of evaluation is to what extent LLMs
representation of student knowledge gaps allows instructors to take informed decisions about their
course structure. We intend to address this with the help of the thousands of high-quality generated
questions contained in our database: combined with empirical evidence and guidance from instructors,
we are implementing a multi-course experiment within the same STEM program that will gather
data for developing and validating specific forms of educational theory-of-mind measures around key
concept dependencies, misconceptions, and learner inference errors.

3.5 Evaluating LLMs capability to provide feedback on areas for improvement

In our online degree program, platform support for learner help-seeking is critical, and a key part of
seeking help is knowing what one doesn’t know. Thus, our field prototype uses the extensive question
set in our course metadata database to enable a variety of adaptive self-assessments. First, given the
wide variance in student backgrounds, response data from an initial entrance evaluation is extremely
valuable as a baseline against which to track student background expertise. Second, self-assessment
within specific courses can provide ongoing measures of progress for both learners and instructors.

In addition to self-assessment and reflection on one’s own progress, providing students relevant
feedback has been shown to be critical to improve learning outcomes [16]. However, instructors
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are not able to provide personalized student feedback due to challenges of scale [11]. Automated
methods for student feedback rely on feedback templates informed by instructor’s domain knowledge
or recent neural methods to automatically provide natural language feedback on code [24]. However,
these approaches require careful data training or domain knowledge making their wide applicability
difficult.

LLMs have been shown to generate flexible natural language feedback given a question and student’s
answer choice [25]. However, to help instructors provide feedback to students at scale, we need to
understand the quality of feedback that LLMs can provide and what are the gaps in different levels
of LLM generated feedback according to Bloom’s taxonomy of educational learning [28]. We also
need studies to understand bias in LLM feedback [3]. A recent study on writing feedback with
LLMs demonstrates that writing produced by users taking the aid of writing assistants with specific
viewpoints has a higher tendency to reflect those viewpoints [20].

3.6 Aligning course activities with objectives

In this respect, our extensive database of AI-generated metadata across lectures and courses in our
degree program is already proving to be of great benefit for doing fine-grained curriculum mapping.
Both instructors and administrators now are able to analyze a complete picture of exactly which
concepts are being taught in each class and how, which important concepts or methods are not
currently covered, how the class materials correspond to overall learning objectives, and how well a
class curriculum is aligned with important learning objectives in upstream and downstream courses
within the program as a whole. Given that online courses tend to be much shorter and faster-paced
than their residential counterparts (e.g. 4 weeks online vs 10-13 weeks on campus), instruction is
more like co-teaching, so it is especially critical to have reliable tools to make sure content stays
coordinated across inter-dependent course series as well as the entire program.

4 Challenges around data collection to support educational objectives

4.1 Privacy considerations

Personalizing education requires data on student’s performance in courses raising privacy consid-
erations of student data [30]. However, LLMs add another dimension to privacy challenges of
personalization [12] due to their potential to infer students’ knowledge states from their data. Most
state-of-the-art LLMs are not accessible outside of the APIs hosted by large organizations. Querying
the LLMs using student data implies agreeing to the terms and conditions of use, which may not be
agreeable to every organization. Student data is protected by strong regulations [13] and in our own
experiments, we are mindful of the need to use student data with LLMs in privacy and regulation
compliant ways. For example, we strictly use University storage for student related data, and ensure
that we de-anonymize any student metadata before querying the GPT api. Our current experiments
include coarse grained description of student performance in terms of concepts that they get right or
wrong in tests. However, future algorithms to support learning that may require more student data
such as their prior background and demographics need to ensure that several student attributes even if
anonymized do not violate privacy when combined together [35].

4.2 Ethical considerations

Use of LLMs in education also raises ethical considerations as LLMs have been known to exhibit
biases and active research is underway to address such issues [3]. LLMs are still in their nascent
stage and despite their ease of text generation through prompting, lay users need training on how to
use them [47]. Their effective use in education requires careful training for instructors and students
alike [4]. Experimental uses in educational scenarios need appropriate safeguards so that no student’s
learning experience is affected due to problems with generative AI that we are still uncovering.

5 Summary of proposed future research directions

Based on our experience so far with exploring how to integrate LLMs at multiple interaction points
of an online academic degree platform, we advocate for further research in the following areas. This
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list is not exhaustive, but represents those areas that we believe are important high priority directions
in service of our goal of providing both students and instructors with effective, robust affordances for
understanding and supporting learning, especially at scale.

Rich LLM-derived representations of learners and content. Even limited additional metadata for
educational content can provide significant new downstream prediction and modeling opportunities
if chosen wisely. For example, robust reading difficulty metadata generated from a basic language-
modeling approach is one simple example from older research [26] that directly enabled better
personalization of results, and characterization of user and site expertise. In general, given interaction
traces between learners and content, improvements in content representation can lead directly to more
expressive learner models. The ability of generative AI to detect and summarize deeper semantic
events, such as key educational moments based on what was said and shown in class, remains a
fruitful area to explore. Beyond fixed, pre-computed metadata, opportunities also exist for hybrid
approaches where existing pre-computed metadata can be transformed and adapted for specific learner
scenarios. For example, metadata describing an important learning moment for a concept in a video
could be ‘translated’ in the context of a team’s project report to explain how that new concept relates
to the team’s choice of methods.

Hybrid models for curriculum optimization. In prototyping an adaptive study guide that used
our generated questions, we became convinced of the need for new hybrid practice frameworks
that combine existing scientifically validated statistical models of learning and memory with the
representation and inference power of LLMs. For example, we are currently investigating combin-
ing the recent DAS3H [8] practice model, which provides success/recall probabilities for specific
skills/concepts based on past question practice history, with LLM-based functions that can add
additional components to the utility objective based on natural language descriptions of important
learner-specific attributes such as their future goals.

Education & theory of mind. As we noted above, there is a need to assess the potential for
even limited domain-specific theory-of-mind abilities in a LLM’s educational interactions. New
LLM evaluation instruments would assess the accuracy, scope, and robustness of a LLM’s ability
to diagnose and explain student misconceptions, knowledge gaps, and incorrect inferences. This
would be related to existing measures such as Mathematical Knowledge for Teaching (MKT) [18],
but in a framework that could be extended to arbitrary domains and wider diagnostic categories.
Beyond evaluation, developing more accurate educational theory-of-mind abilities for interaction
would likely require new rich data representations of content and learners, AI-expert collaboration,
and enhanced latent representations in learner models informed by the significant existing line of
educational research on MKT and general help seeking (e.g. [23]).

Impact of LLM recommendations on instructor decision-making. Due to their potential for unre-
stricted and convincing text generation, LLMs can significantly impact human decision-making [3].
We have limited understanding of the extent of bias in LLM recommendations [48]. Instructors using
LLM support to draw insights or create questions can over-rely on LLM generations substantially
changing the outcome of their work, depending on the model’s data representation [36]. We can draw
inspiration from the rich literature on Human-AI interaction [31], and Cognitive science [41] to study
the interaction aspects of LLMs and how they can best fit with the decision-making of instructors to
augment their capabilities, instead of overriding it.
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