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Abstract
The automatic generation of educational questions will play a key role in scaling on-

line education, enabling self-assessment at scale when a global population is manoeuvring
their personalised learning journeys. This work compares the predictive performance of
foundational large-language model-based systems and their small-language model coun-
terparts for educational question generation. Our experiments demonstrate that small
language models can produce educational questions with comparable quality by further
pre-training and fine-tuning while producing very lightweight models that can be easily
trained, stored and deployed.

Introduction
Digital learning resources, such as Massively Open Online Courses (MOOCs)
and Open Educational Resources (OERs) often lack associated questions that
enable self-testing and skill verification [2, 5] after the learning resources are
consumed. Generating scalable educational questions is a crucial step towards
democratising education [4]. While the use of Large Language Models (LLM)
has been explored for generating educational questions, their expensive train-
ing and maintenance costs pose challenges. This work explores the feasibility
of using Small Language Models (sLM) as a smaller alternative to LLMs in
educational question generation where 1) context is provided alone as input
and 2) the answer is provided with the context.

Related Work
• Automatic question generation task settings

– Question generation using both context and expected response [12]
– Question generation using only the context [16, 8, 6]

• Educational neural Question Generation
– Zero-shot pre-trained language models (PLMs), Google T5 [10]
– Third party hosted foundational models, ChatGPT [14, 1, 7]
– Fine-tuning LLM on question and multiple-choice distracter generation

∗ Leaf, fine-tuned a pre-trained T5 model on question generation [13]
– Pre-training sLM to be enhanced for educational question generation

∗ EduQG, T5-small pre-trained on scientific text [9, 3].

Related Datasets
• SQuAD 1.1 dataset [11], Less suited for educational question generation.
• SciQ [15], More suitable for evaluating educational question generation

Methodology
The primary objective is to compare the relative performance of the education-
focused sLM proposed in [9, 3] to SOTA LLMs used for educational QG. We
identify three key research questions:
• RQ1: How does the education-specific sLM perform in comparison to a

larger general-purpose LM in educational QG when the answer is/ is not
provided as input?

• RQ2: How does an education-specific sLM’s output questions compare to
a SOTA prompt-based system like ChatGPT?

• RQ3: For the contexts tested with chatGPT, Can the sLM-generated ques-
tions be accepted by human evaluators?

Figure 1: Methodology for training and evaluating the baseline Leaf model (above, for RQ1),
EduQG (middle) and ChatGPT (cloud, for RQ2) models.

Results

Table 1: Comparison of predictive performance between leaf baseline (T5-base-based) and
EduQG (T5-small-based). The better performance is indicated in bold.

Task Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 F1-Score
Without Leaf LLM Baseline 0.9285 0.7738 0.6251 0.5171 0.5843
Answers EduQG sLM 0.9231 0.7531 0.5994 0.4885 0.5741

With Leaf LLM Baseline 0.9545 0.8176 0.6754 0.5737 0.6528
Answers EduQG sLM 0.9499 0.8051 0.6609 0.5616 0.6516

Table 2: Comparison of predictive performance between leaf baseline (T5-base-based), Chat-
GPT and EduQG (T5-small-based) on a subset of contexts from the SciQ dataset. The best
and second best performance is indicated in bold and italic faces respectively.

Task Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 F1-Score
Baseline Leaf LLM Baseline 0.7275 0.5054 0.3536 0.2909 0.4749
LLMs ChatGPT API 0.6071 0.4219 0.3146 0.2631 0.3941
sLM EduQG 0.6357 0.3877 0.2544 0.2076 0.4059

Conclusion

• Compared the generation performance of LLM-based general-purpose
QG models and sLM-based QG models for educational use cases.

• The generation capabilities of sLM are very similar to models that are 4
times larger.

• Running human evaluations on the generated questions is one of the key
next steps.

• Identifying new datasets to improve cross-domain (beyond STEM) and
cross-lingual capabilities of the proposed models is another aspect that
subsequent work will focus on.
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