Automated Distractor and Feedback Generation for Math Multiple-choice Questions via In-context Learning

Hunter McNichols, Wanyong Feng, Jaewook Lee, Alexander Scarlatos, Digory Smith, Simon Woodhead, Andrew Lan

Manning College of Information and Computer Sciences, University of Massachusetts Amherst

1. Background

- Multiple-choice questions (MCQs) are widely used for quick and accurate grading
- However, manually crafting high quality MCQs is demanding and labor-intensive
- Proposed tasks
 - Distractor generation
 - $g^{\mathsf{dis}}(s,k,e_k) \to \hat{D}$
 - Feedback generation
 - $g^{\mathsf{fb}}(s, d_i, k, e_k) \to f_i$

2. Methodology

2-1. In-Context Learning

Stem (s)

Write 35 as a fraction of 80. Answer in the simplest form.

Key (<i>k</i>)	Explanation (e_k)
A) $\frac{7}{16}$	LCM of 35 and 80 being 5, dividing both numerator and denominator by 5 results in $35/80 = 7/16$.
Distractor (<i>D</i>)	Feedback (F)
B) $\frac{35}{80}$	It appears that you have not simplified the fraction.
C) $\frac{7}{80}$	You simplified the numerator while keeping the same denominator.
D) $\frac{80}{35}$	You appear to have confused the denominator and numerator.

Figure 1. Different parts of math MCQs illustrated with an example.

Figure 2. Overview of distractor generation with a math MCQ on "compound percentage decrease".

Method	Encode			Prompt			
	k	e_k	d	k	e_k	F(f)	D(d)
kNN ^{none}	no	no	no	no	no	none	all
kNN ^{key}	yes	no	no	yes	no	none	all
kNN ^{all}	yes	yes	no	yes	yes	all	all
kNN ^{one}	no	no	yes	no	no	one	one

Table 1. Encoding strategies for retrieval and prompt formats used in kNN-based methods.

3. Results

•

3-1. Evaluation Metrics

Distractor generation

- Partial: at least one generated distractor matches a ground-truth one
- Exact: all generated distractors match groundtruth ones
- Proportional: the portion of generated distractors that match ground-truth ones

Feedback generation

- Answer adjustment: ask ChatGPT to use feedback to get correct answer - determines if a feedback message is helpful
- Distractor prediction: ask ChatGPT to predict the distractor given the feedback determines if a feedback message explains why a distractor is incorrect

4. Takeaways and Future work

- kNN prompting is an effective tool for distractor and feedback generation, but leaves room for improvement
- Effectiveness of reference-based metrics depends on generation method; reference-free metrics are less biased but have room for improvement
- Our initial exploration opens up many avenues for future work
 - Explore approaches for generation other than LLM prompting (ex: fine-tuning)
 - Use text encodings that closely align with student errors rather than semantic features
 - Conduct a human evaluation on the generated distractors and feedback messages

• Use LLM to estimate the functions g_{ϕ}^{fb} and g_{ϕ}^{dis} , where

 ϕ are LLM parameters

Utilize in-context learning with similar MCQs chosen by kNN algorithm as few-shot examples for LLM input

Method	Exact	Partial	Proportional
kNN ^{all}	10.06	71.02	38.16
kNN ^{none}	6.01	54.52	27.20
kNN ^{key}	8.13	61.48	32.39
Random	1.77	52.30	22.85
Zero-shot ^{ChatGPT}	1.77	50.09	21.79
Zero-shot ^{GPT-4}	3.18	44.52	21.67
$\mathrm{kNN}^{\mathrm{all}}_{\neg T}$	3.89	55.83	25.91

Table 2. Results of distractor generation where kNNbased methods often significantly outperform baselines.

Method	BLEU	ROUGE-L	METEOR	Adj.	Dist. Pred.
Ground-truth	_	_	_	49.00	24.73
kNN ^{one}	33.70	42.28	43.64	46.64	18.26
$kNN_{\neg T}^{one}$	13.04	25.65	26.83	42.05	15.55
Random	4.21	20.08	18.63	42.17	13.19
Zero-shot	3.12	17.62	18.05	<u>47.70</u>	<u>20.49</u>

Table 3. Evaluation of generated feedback messages onreference-based and reference-free metrics.