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1. Background

Stem (s)
) M.UItlple_ChOICe qu_eStlonS (MCQs) are Write 35 as a fraction of 80. Answer in the simplest form.
widely used for quick and accurate _
grading Key (k) Explanation (¢)
* However, manually crafting high quality A) l LCM of 35 and 80 being 5, dividing both numerator and denominator
MCQs is demanding and labor-intensive 16 by 5 results in 35/80 = 7/16.

* Proposed tasks Distractor (D) Feedback (F)

 Distractor generation

i A 35 r
. ngS( S, k, ek) — D B) % gIt appears that you have not simplified the fraction. )
* Feedback generation 7 -
. gfb( s.d.k ek) N f C) % kYou simplified the numerator while keeping the same denominator. )
s Uips Iy l
80 (- :
D) g kYou appear to have confused the denominator and numerator. )

2. Methodology

2.1. In-Context Learning Figure 1. Different parts of math MCQs illustrated with an example.
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Explanation: Since there’s an 8% decrease, we use 92% by raising it to the power of 4.

"' \‘\ 4
% " encode Question: What’s the multiplier for finding the value after a 8% decrease for 4 years?
' Answer: x 0.92*

11 Feedback: You used 8% as the multiplier, but we require the multiplier for an
8% decrease from 100%.

istractorl: x 0.08*

Distractor2 Feedback: We don't multiply by 4; instead, we raise the number of years to the
power of 4 since the change must be applied four times.

Distractor2: 0.92 x 4

Distractor3 Feedback: You found the multiplier for an 8% increase, but we require the
multiplier for a decrease.

kDistractor3: x 1.08*
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Figure 2. Overview of distractor generation with a math MCQ on “compound percentage decrease”.
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Encode Prompt Use LLM to estimate the functions 2'° and , Where
Method 4 "o, d | k e F(f) D) Sp AN S
KNN™® no no no | no no none all ¢ are LLM parameters
kNN:ly yes no no |yes no none all «  Utilize in-context learning with similar MCQs chosen by
kNN~ yes yes mno |yes yes all  all kNN algorithm as few-shot examples for LLM input
kNN no no Yyes | no no  one one

Table 1. Encoding strategies for retrieval and prompt
formats used in kNN-based methods.

3. Results :
Method Exact Partial Proportional

3-1. Evaluation Metrics KNN! 10.06 71.02 38.16

: : KNN"o"e 6.01 54.52 27.20

Distractor generation KNNKeY 813 6148 32 39

* Partial: at least one generated distractor Random 177 5230 73 85

matches a ground-truth one Zero-shot™CFT 177 50.09 21.79

* Exact: all generated distractors match ground- Zero-shotF T 3.18 44.52 21.67

truth ones kNN, 3.89  55.83 25.91

* Proportional: the portion of generated
distractors that match ground-truth ones

Feedback generation
e Answer adjustment: ask ChatGPT to use

Table 2. Results of distractor generation where kNN-
based methods often significantly outperform baselines.

: Method BLEU ROUGE-L METEOR Adj. Dist. Pred.
feedback to get correct. answer - determines  —= — — — 49.00 34.73
It a feedback message is helpful KNN©™ 3370 4228 43.64 4664  18.26
* Distractor prediction: ask ChatGPT to kNN, 13.04 25 65 26.83 42.05 15.55
predict the distractor given the feedback - Random 4.21 20.08 18.63 42.17 13.19
determines if a feedback message explains Zero-shot 3.12 17.62 18.05  47.70 20.49

why a distractor is incorrect
Table 3. Evaluation of generated feedback messages on

reference-based and reference-free metrics.
4. Takeaways and Future work

« kNN prompting is an effective tool for distractor and feedback generation, but leaves room for improvement
 Effectiveness of reference-based metrics depends on generation method; reference-free metrics are less
biased but have room for improvement
Our initial exploration opens up many avenues for future work
 Explore approaches for generation other than LLM prompting (ex: fine-tuning)
 Use text encodings that closely align with student errors rather than semantic features
« Conduct a human evaluation on the generated distractors and feedback messages



